【題目】設數(shù)列的首項,且,,.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)若,數(shù)列中是否存在連續(xù)三項成等差數(shù)列?若存在,寫出這三項,若不存在說明理由.
(Ⅲ)若是遞增數(shù)列,求的取值范圍.
【答案】(1)見解析(2)成等差數(shù)列(3)
【解析】
(I)由,根據(jù)等比數(shù)列的定義可得結(jié)果;(II)利用(I)可得,進而得到,若中存在連續(xù)三項成等差數(shù)列,則必有,解出即可;(III )如果成立,可得,對分奇數(shù)、偶數(shù)兩種情況討論,即可得出的取值范圍.
(Ⅰ)因為,且,
所以數(shù)列是首項為,公比為的等比數(shù)列;
(Ⅱ)由(Ⅰ)知是首項為,公比為的等比數(shù)列.
∴
若中存在連續(xù)三項成等差數(shù)列,則必有,
即
解得,即成等差數(shù)列.
(Ⅲ)如果成立,即對任意自然數(shù)均成立.
化簡得
當為偶數(shù)時,,因為是遞減數(shù)列,
所以,即;
當為奇數(shù)時,,因為是遞增數(shù)列,
所以,即;
故的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】設{an}的首項為a1 , 公差為﹣1的等差數(shù)列,Sn為其前n項和,若S1 , S2 , S4成等比數(shù)列,則a1=( )
A.2
B.﹣2
C.
D.﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項和Sn , 且滿足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3).
(1)試求數(shù)列{an}的通項公式;
(2)令bn= ,Tn是數(shù)列{bn}的前n項和,證明:Tn< ;
(3)證明:對任意給定的m∈(0, ),均存在n0∈N+ , 使得當n≥n0時,(2)中的Tn>m恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣ax﹣3(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)+(a+1)x+4﹣e≤0對任意x∈[e,e2]恒成立,求實數(shù)a的取值范圍(e為自然常數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,且,,平面底面,為的中點, 是棱的中點, ,.
(1)求證:平面BDM; (2)D到面PBC距離;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲罐中有3個紅球,2個白球和3個黑球,乙罐中有5個紅球,3個白球和3個黑球.先從甲罐中隨機取出一球放入乙罐,分別以,和表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機取出一球,以表示由乙罐取出的球是紅球的事件,則下列結(jié)論中正確的是__________(寫出所有正確結(jié)論的序號).
①P(B)=;②;
③事件B與事件A1相互獨立;
④A1,A2,A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因為它與A1,A2,A3中究竟哪一個發(fā)生有關(guān).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項和Sn有最大值,那么當Sn取的最小正值時,n=( )
A.11
B.17
C.19
D.21
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)在定義域[﹣1,1]是奇函數(shù),當x∈[﹣1,0]時,f(x)=﹣3x2 .
(1)當x∈[0,1],求f(x);
(2)對任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊平行四邊形綠地ABCD,經(jīng)測量BC=2百米,CD=1百米,∠BCD=120°,擬過線段BC上一點E設計一條直路EF(點F在四邊形ABCD的邊上,不計路的寬度),將綠地分為面積之比為1:3的左右兩部分,分別種植不同的花卉,設EC=x百米,EF=y百米.
(1)當點F與點D重合時,試確定點E的位置;
(2)試求x的值,使路EF的長度y最短.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com