5.將二進制101 11(2) 化為十進制為23(10);再將該數(shù)化為八進制數(shù)為27(8)

分析 利用二進制數(shù)化為“十進制”的方法可得10111(2)=1×24+0×23+1×22+1×21+1×20=23,再利用“除8取余法”即可得出.

解答 解:二進制數(shù)10111(2)=1×24+0×23+1×22+1×21+1×20=23.
23÷8=2…7
2÷8=0…2
可得:23(10)=27(8)
故答案為:23(10),27(8)

點評 本題考查了二進制數(shù)化為“十進制”的方法、“除8取余法”,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.在[-4,3]上隨機取一個數(shù)m,能使函數(shù)$f(x)={x}^{2}+\sqrt{2}mx+2$在R上有零點的概率為$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).求tanθ的值.
(2)已知f(α)=$\frac{sin(5π-α)•cos(α+\frac{3π}{2})•cos(π+a)}{sin(α-\frac{3π}{2})•cos(α+\frac{π}{2})•tan(α-3π)}$.化簡f(α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知f(x)=ax3+bx+9(a,b∈R),且f(-2016)=7,則f(2016)=11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=(1+x)2-2ln(1+x).
(Ⅰ)對任意x0∈[0,1],不等式f(x0)-m≤0恒成立,求實數(shù)m的最小值;
(Ⅱ)若存在x0∈[0,1],使不等式f(x0)-m≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某射手進行一次射擊,射中環(huán)數(shù)及相應的概率如下表
環(huán)數(shù)109877以下
概率0.250.30.20.15N
(1)根據(jù)上表求N的值(2)該射手射擊一次射中的環(huán)數(shù)小于8環(huán)的概率
(3)該射手射擊一次至少射中8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為( 。
A.$\stackrel{∧}{y}$=1.23x+5B.$\stackrel{∧}{y}$=1.23x+4C.$\stackrel{∧}{y}$=0.08x+1.23D.$\stackrel{∧}{y}$=1.23x+0.08

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知p:方程${x^2}+2\sqrt{2}x+m=0$有兩個不相等的實數(shù)根;q:不等式4x2+4(m-2)x+1>0的解集為R.若“p∨q”為真,“p∧q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設曲線y=f(x)在某點處的導數(shù)值為0,則過曲線上該點的切線( 。
A.垂直于x軸B.垂直于y軸
C.既不垂直于x軸也不垂直于y軸D.方向不能確定

查看答案和解析>>

同步練習冊答案