設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上任一點(diǎn),點(diǎn)的坐標(biāo)為,則的最大值為      

 

【答案】

15

【解析】本試題主要考查了橢圓的性質(zhì)的運(yùn)用,結(jié)合三點(diǎn)共線求解最值。

由題意F2(3,0),|MF2|=5,由橢圓的定義可得,|PM|+|PF1|=2a+|PM|-|PF2|=10+|PM|-|PF2|≤10+|MF2|=15,當(dāng)且僅當(dāng)P,F(xiàn)2,M三點(diǎn)共線時(shí)取等號(hào),故答案為:15

解決該試題的關(guān)鍵是將問(wèn)題轉(zhuǎn)換為PM|+|PF1|=2a+|PM|-|PF2|,結(jié)合對(duì)稱性可知,只有當(dāng)P,F(xiàn)2,M三點(diǎn)共線時(shí)滿足題意。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年湖南卷文)設(shè)分別是橢圓的左、右焦點(diǎn),P是其右準(zhǔn)線上縱坐標(biāo)為為半焦距)的點(diǎn),且,則橢圓的離心率是

A.          B.             C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的焦點(diǎn)在軸上

(Ⅰ)若橢圓的焦距為1,求橢圓的方程;

(Ⅱ)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上的第一象限內(nèi)的點(diǎn),直線軸與點(diǎn),并且,證明:當(dāng)變化時(shí),點(diǎn)在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省湖州市高二12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)

設(shè)分別是橢圓的左、右焦點(diǎn).

⑴若是該橢圓上的一點(diǎn),且,求的面積;

⑵若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;

⑶設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省鄭州市高三第十四次調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)分別是橢圓的左,右焦點(diǎn)。

(Ⅰ)若是第一象限內(nèi)該橢圓上的一點(diǎn),且,求點(diǎn)的坐標(biāo)。

(Ⅱ)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中O為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省高三一輪檢測(cè)復(fù)習(xí)數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

設(shè)分別是橢圓的左、右焦點(diǎn),過(guò)斜率為1的直線相交于兩點(diǎn),且成等差數(shù)列。

(Ⅰ)求的離心率;     

(Ⅱ)設(shè)點(diǎn)滿足,求的方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷