【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點且傾斜角為.

1)求曲線的極坐標方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點,求.

【答案】1;(2.

【解析】

1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,由此可求曲線的極坐標方程;直接利用直線的傾斜角以及經(jīng)過的點求出直線的參數(shù)方程即可;

2)將直線的參數(shù)方程,代入曲線的普通方程,整理得,利用韋達定理,根據(jù)的中點,解出即可.

1)由為參數(shù))消去參數(shù),

可得,即

已知曲線的普通方程為,

,

,即,

曲線的極坐標方程為,

直線經(jīng)過點,且傾斜角為,

直線的參數(shù)方程:為參數(shù),.

2)設(shè)對應(yīng)的參數(shù)分別為.

將直線的參數(shù)方程代入并整理,

,

.

的中點,

,

,,

,即,

,

,即,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為θ為參數(shù)),以原點為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為

1)求曲線C1的極坐標方程以及曲線C2的直角坐標方程;

2)若直線lykx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ||PQ|,點M的直角坐標為(1,0),求△PMQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在五面體中, , , , ,平面平面..

(1)證明:直線平面;

(2)已知為棱上的點,試確定點位置,使二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 若關(guān)于的不等式的解集非空,且為有限集,則實數(shù)的取值集合為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生,新生接待其實也是和社會溝通的一個平臺.校團委、學(xué)生會從在校學(xué)生中隨機抽取了160名學(xué)生,對是否愿意投入到新生接待工作進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

愿意

不愿意

男生

60

20

女生

40

40

1)通過估算,試判斷男、女哪種性別的學(xué)生愿意投入到新生接待工作的概率更大.

2)能否有99%的把握認為,愿意參加新生接待工作與性別有關(guān)?

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市2019年中的12個月的收入與支出數(shù)據(jù)的折線圖如圖所示,則下列說法中,錯誤的是( )

A.該超市在2019年的12個月中,7月份的收益最高;

B.該超市在2019年的12個月中,4月份的收益最低;

C.該超市在20197月至12月的總收益比21091月至6月的總收益增長了90萬元;

D.該超市在20191月至6月的總收益低于21097月至12月的總收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右頂點分別為,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓軸右側(cè)的部分交于、兩點.

1)求橢圓的標準方程;

2)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點分別為、,拋物線的焦點恰好是該橢圓的一個頂點.

1)求橢圓的方程;

2)已知直線與圓相切,且直線與橢圓相交于、兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an},等比數(shù)列{bn}滿足:a1b1=1,a2b2,2a3b3=1.

(1)求數(shù)列{an},{bn}的通項公式;

(2)cnanbn求數(shù)列{cn}的前n項和Sn.

查看答案和解析>>

同步練習(xí)冊答案