科目:高中數學 來源:2013-2014學年江蘇鹽城第一中學高三第二學期期初檢測理科數學試卷(解析版) 題型:解答題
在平面直角坐標系中,已知點,是動點,且的三邊所在直線的斜率滿足.
(1)求點的軌跡的方程;
(2)若是軌跡上異于點的一個點,且,直線與交于點,問:是否存在點,使得和的面積滿足?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年江蘇鹽城第一中學高三第二學期期初檢測文科數學試卷(解析版) 題型:解答題
在平面直角坐標系中,已知點,是動點,且的三邊所在直線的斜率滿足.
(1)求點的軌跡的方程;
(2)若是軌跡上異于點的一個點,且,直線與交于點,問:是否存在點,使得和的面積滿足?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2014屆安徽省高二下學期期末考試數學試卷(解析版) 題型:解答題
定義:如果數列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.
(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;
(Ⅲ)根據“保三角形函數”的定義,對函數,,和數列1,,,()提出一個正確的命題,并說明理由.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年北大附中高三2月統(tǒng)練理科數學 題型:解答題
定義:如果數列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.
(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;
(Ⅲ)根據“保三角形函數”的定義,對函數,,和數列1,,,()提出一個正確的命題,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com