(選修4—1)如圖,PCB為圓O的割線,并且不過圓心O,已知∠BPA=30°,PA=2,PC=1,則圓O的半徑為________    

 

【答案】

7

【解析】如圖,連AO并延長,交圓O與另一點(diǎn)E,交割線PCB于點(diǎn)D,則Rt△PAD中,

由∠DPA=30°,,得AD=2,PD=4,而PC=1,故CD=3,由切割線定理,,故DB=8.

設(shè)圓O的半徑為R,由相交弦定理,CD•DB=AD•DE,即3×8=2(2R-2),得R=7.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:
如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作圓O的切線,與CA的延長線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長與BE相交于點(diǎn)F,延長AF與CB的延長線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-1)如圖,若△ACD~△ABC,則下列式子中成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-1)如圖,在△ABC中,∠ABC=90°,以BC為直徑的圓O交AC于點(diǎn)D,設(shè)E為AB的中點(diǎn). 
(I)求證:直線DE為圓O的切線;
(Ⅱ)設(shè)CE交圓O于點(diǎn)F,求證:CD•CA=CF•CE
(選修4-4)在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)),直線l經(jīng)過點(diǎn)p(2,2),傾斜角a=
π
3

(I)寫出圓C的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|-|PB|的值.
(選修4-5)已知函數(shù)f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)當(dāng)a=0時(shí),解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河南省平頂山市高二第二學(xué)期期末調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:選擇題

.(選修4—1)如圖,若△ACD~△ABC,則下列式子中成立的是(    )

A.       B. 

C.    D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案