7.宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.圖1是源于其思想的一個(gè)程序框圖,若輸入的a,b分別為4,2,則輸出的n等于( 。
A.2B.3C.4D.5

分析 模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運(yùn)行,可得
a=4,b=2,n=1,
a=6,b=4,
不滿足循環(huán)的條件a≤b,執(zhí)行循環(huán)體,n=2,a=9,b=8
不滿足循環(huán)的條件a≤b,執(zhí)行循環(huán)體,n=3,a=13.5,b=16
滿足循環(huán)的條件a≤b,退出循環(huán),輸出n的值為3.
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,命題p:“B≠60°“,命題q:“△ABC的三個(gè)內(nèi)角A,B,C不成等差數(shù)列“,那么p是q的
( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點(diǎn)分別是F1,F(xiàn)2,P為橢圓C1上任意一點(diǎn),|PF1|2+|PF2|2的最小值為8.
(I)求橢圓C1的方程;
(II)設(shè)橢圓C2:$\frac{{2{x^2}}}{a^2}+\frac{{2{y^2}}}{b^2}=1,Q({{x_0},{y_0}})$為橢圓C2上一點(diǎn),過(guò)點(diǎn)Q的直線交橢圓C1于A,B兩點(diǎn),且Q為線段AB的中點(diǎn),過(guò)O,Q兩點(diǎn)的直線交橢圓C1于E,F(xiàn)兩點(diǎn).
(i)求證:直線AB的方程為x0x+2y0y=2;
(ii)當(dāng)Q在橢圓C2上移動(dòng)時(shí),四邊形AEBF的面積是否為定值?若是,求出該定值;不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示程序框圖,若輸入的k=4,則輸出的s=( 。
A.$\frac{1}{3}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.對(duì)于函數(shù)f(x)給出定義:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)函數(shù),若函數(shù)f″(x)有零點(diǎn)x0,則稱(x0,f(x0))為函數(shù)f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心,給定函數(shù)f(x)=$\frac{1}{3}$x3-x2-$\frac{1}{3}$x+2,請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算$\sum_{i1}^{4035}$f($\frac{i}{2017}$)=4035.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)$P(\sqrt{2},2)$在橢圓上.
(1)求橢圓C的方程;
(2)過(guò)橢圓上的焦點(diǎn)F作兩條相互垂直的弦AC,BD,求|AC|+|BD|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)點(diǎn)O、P、Q是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與拋物線y2=4x的交點(diǎn),O為坐標(biāo)原點(diǎn),若△OPQ的面積為2,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,且a3=5,S6=42,則S9=117.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=3,|$\overrightarrow{a}$-$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$夾角為θ,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|cosθ}$+$\frac{|\overrightarrow|}{|\overrightarrow{a}|cosθ}$=( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{5}{4}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案