<0,且<0,則有

A.第一象限         B.第二象限        C.第三象限       D第四象限

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年臨沂一模理)(12分)

已知點M在橢圓(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點F。

(1)若圓M與y軸相交于A、B兩點,且△ABM是邊長為2的正三角形,求橢圓的方程;

(2)若點F(1,0),設(shè)過點F的直線l交橢圓于C、D兩點,若直線l繞點F任意轉(zhuǎn)動時恒有|OC|2+|OD|2<|CD|2,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南鄭州盛同學(xué)校高三4月模擬考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知命題p:函數(shù)(a≠0)在(0,1)內(nèi)恰有一個零點;命題q:函數(shù)在(0,+)上是減函數(shù).若p且為真命題,則實數(shù)a的取值范圍是(  )

A.a(chǎn)>1              B.a(chǎn)≤2             C.1<a≤2           D.a(chǎn)≤l或a>2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省嘉興市八校高二上期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

若點M(2, m) (m<0) 到直線l:5x-12y+n=0的距離是4,且直線l在y軸上的截距為,則m+n=      .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省豫東、豫北十所名校高三測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知

    (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

    (Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三第二次教學(xué)質(zhì)量考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).

  

(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;

(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時,恒有< 1.

 

查看答案和解析>>

同步練習(xí)冊答案