【題目】在平面直角坐標(biāo)系中,將曲線(為參數(shù))上任意一點(diǎn)經(jīng)過(guò)伸縮變換后得到曲線的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)點(diǎn)P為曲線上的任意一點(diǎn),求點(diǎn)P到直線的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
【答案】(1),.(2)最大值,此時(shí)點(diǎn).
【解析】
(1)根據(jù)伸縮坐標(biāo)關(guān)系,可求參數(shù)方程,利用消去參數(shù);由,即可求直線的直角坐標(biāo)方程;
(2)點(diǎn)P用參數(shù)表示,根據(jù)點(diǎn)到直線的距離公式,求出P到直線的距離,再結(jié)合三角函數(shù)的有界性,即可求解.
(1),
消去參數(shù),得,
所以的普通方程為;
直線,
直線的直角坐標(biāo)方程;
(2)設(shè),點(diǎn)到直線直線的距離為,
,
其中,
當(dāng)時(shí),取得最大值為,
此時(shí),
點(diǎn)P的坐標(biāo)為時(shí),點(diǎn)P到直線的距離的最大為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,的焦點(diǎn)為,過(guò)點(diǎn)的直線的斜率為,與拋物線交于,兩點(diǎn),拋物線在點(diǎn),處的切線分別為,,兩條切線的交點(diǎn)為.
(1)證明:;
(2)若的外接圓與拋物線有四個(gè)不同的交點(diǎn),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,)的圖象與軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向左平移個(gè)單位,縱坐標(biāo)擴(kuò)大到原來(lái)的2倍得到函數(shù)的圖象,則下列關(guān)于函數(shù)的命題中正確的是( )
A.函數(shù)是奇函數(shù)B.的圖象關(guān)于直線對(duì)稱
C.在上是增函數(shù)D.當(dāng)時(shí),函數(shù)的值域是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以雙曲線上一點(diǎn)為圓心作圓,該圓與軸相切于的一個(gè)焦點(diǎn),與軸交于兩點(diǎn),若,則雙曲線的離心率________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的焦距為2,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于,兩點(diǎn),問(wèn)是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(),點(diǎn)為橢圓短軸的上端點(diǎn),為橢圓上異于點(diǎn)的任一點(diǎn),若點(diǎn)到點(diǎn)距離的最大值僅在點(diǎn)為短軸的另一端點(diǎn)時(shí)取到,則稱此橢圓為“圓橢圓”,已知.
(1)若,判斷橢圓是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求的取值范圍;
(3)若橢圓是“圓橢圓”,且取最大值,為關(guān)于原點(diǎn)的對(duì)稱點(diǎn),也異于點(diǎn),直線、分別與軸交于、兩點(diǎn),試問(wèn)以線段為直徑的圓是否過(guò)定點(diǎn)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若存在兩個(gè)不同的零點(diǎn),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com