已知雙曲線C:
x2
4
-
y2
m
=1的開口比等軸雙曲線的開口更開闊,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意,等軸雙曲線的離心率為
2
,利用雙曲線C:
x2
4
-
y2
m
=1的開口比等軸雙曲線的開口更開闊,可得
4+m
4
>2,即可求出實(shí)數(shù)m的取值范圍.
解答: 解:由題意,等軸雙曲線的離心率為
2

∵雙曲線C:
x2
4
-
y2
m
=1的開口比等軸雙曲線的開口更開闊,
4+m
4
>2,
∴m>4,
∴實(shí)數(shù)m的取值范圍是(4,+∞).
故答案為:(4,+∞).
點(diǎn)評(píng):本題考查雙曲線的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.
(Ⅰ)求圖中a的值,并估計(jì)日需求量的眾數(shù);
(Ⅱ)某日,經(jīng)銷商購進(jìn)130件該種產(chǎn)品,根據(jù)近期市場(chǎng)行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤為S元.
  (。⿲表示為x的函數(shù);
  (ⅱ)根據(jù)直方圖估計(jì)當(dāng)天純利潤S不少于3400元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={f(x)|存在實(shí)數(shù)t使得函數(shù)f(x)滿足f(t+1)=f(t)+f(1)},則下列函數(shù)(a,b,k都是常數(shù)):
①y=kx+b(k≠0,b≠0);②y=ax(a>1);③y=
k
x
(k≠0);④y=sinx.
其中屬于集合M的函數(shù)是
 
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)某工產(chǎn)加工的某種鋼管,內(nèi)徑與規(guī)定的內(nèi)徑尺寸之差是離散型隨機(jī)變量;
(3)隨機(jī)變量的方差和標(biāo)準(zhǔn)差都反映了隨機(jī)變量的取值偏離于均值的平均程度,它們?cè)叫,則隨機(jī)變量偏離于均值的平均程度越;
(4)若關(guān)于x的不等式|x-2|+|x-a|≥a在R上恒成立,則a的最大值是1;
(5)甲、乙兩人向同一目標(biāo)同時(shí)射擊一次,事件A:“甲、乙中至少一人擊中目標(biāo)”與事件B:“甲,乙都沒有擊中目標(biāo)”是相互獨(dú)立事件.
其中結(jié)論正確的是
 
.(把所有正確結(jié)論的序號(hào)填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

工人師傅在如圖1的一塊矩形鐵皮的中間畫了一條曲線,并沿曲線剪開,將所得的兩部分卷成圓柱狀,如圖2,然后將其對(duì)接,可做成一個(gè)直角的“拐脖”,如圖3.對(duì)工人師傅所畫的曲線,有如下說法:

(1)是一段拋物線;
(2)是一段雙曲線;
(3)是一段正弦曲線;
(4)是一段余弦曲線;
(5)是一段圓。
則正確的說法序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC中,AB=BC=1,AD=2,BD=
5
,AC=
2
,BC⊥AD,則三棱錐的外接球的體積為=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足z(2-3i)=6+4i(i為虛數(shù)單位),則z的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
3
-
y2
b2
=1的焦點(diǎn)到一條漸近線的距離為1,則該雙曲線的離心率為( 。
A、
2
B、
3
C、
2
3
3
D、
3
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案