某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定rh為何值時該蓄水池的體積最大.

(1)(0,5).(2)當r=5,h=8時,該蓄水池的體積最大.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)和函數(shù),其中為參數(shù),且滿足.
(1)若,寫出函數(shù)的單調(diào)區(qū)間(無需證明);
(2)若方程上有唯一解,求實數(shù)的取值范圍;
(3)若對任意,存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在C城周邊已有兩條公路l1,l2在點O處交匯.已知OC=()km,∠AOB=75°,∠AOC=45°,現(xiàn)規(guī)劃在公路l1,l2上分別選擇AB兩處為交匯點(異于點O)直接修建一條公路通過C城.設(shè)OAx km,OBy km.

(1)求y關(guān)于x的函數(shù)關(guān)系式并指出它的定義域;
(2)試確定點AB的位置,使△OAB的面積最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1 000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:資金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)yf(x)模型制定獎勵方案,試用數(shù)學語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y+2是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax2bxb-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司試銷一種成本單價為500元/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價—成本總價)為元. 試用銷售單價表示毛利潤并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一次函數(shù)上的增函數(shù),,已知.
(1)求;
(2)若單調(diào)遞增,求實數(shù)的取值范圍;
(3)當時,有最大值,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(函數(shù)
(1)若是偶函數(shù),求實數(shù)的值;
(2)當時,求在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
⑴當時,若函數(shù)存在零點,求實數(shù)的取值范圍并討論零點個數(shù);
⑵當時,若對任意的,總存在,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案