不等式
1-2x
x+1
≥0的解集是( 。
A、[-1,
1
2
]
B、(-1,
1
2
]
C、(-∞,-1)∪[
1
2
,+∞)
D、(-∞,-1]∪[
1
2
,+∞)
考點:其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:原不等式等價于
(2x-1)(x+1)≤0
x+1≠0
,解得不等式組可得.
解答: 解:原不等式等價于
(1-2x)(x+1)≥0
x+1≠0
,
(2x-1)(x+1)≤0
x+1≠0
,解得-1<x≤
1
2
,
∴原不等式的解集為:(-1,
1
2
]
故選:B.
點評:本題考查分式不等式的解集,轉(zhuǎn)化為不等式組是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若函數(shù)f(x)在D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在D上也可導(dǎo),則稱f(x)在D上存在二階導(dǎo)函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個函數(shù):
①f(x)=x2+2x;
②f(x)=sinx+cosx;
③f(x)=lnx-x;
④f(x)=-xex
在(0,
π
2
)上是凸函數(shù)的是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lgx,x>0
-lg(-x),x<0
,g(x)=(
1
2
 ax2+bx(a≠0).若函數(shù)f(x)與g(x)的圖象有且僅有兩個公共點,坐標從左至右記為(x1,y1),(x2,y2),給出下列命題正確的是( 。
A、若a>0,則x1+x2<0,y1-y2>0
B、若a<0,則x1+x2>0,y1-y2>0
C、若a<0,則x1+x2<0,y1-y2符號無法確定
D、若a<0,則x1+x2>0,y1-y2符號無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列是二元一次不等式2x-y+6≤0的解所表示的平面區(qū)域的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x5+2x4+3x3+4x2+5x+6,用秦九韶算法求這個多項式當(dāng)x=2時的值的過程中,不會出現(xiàn)的結(jié)果是( 。
A、11B、28C、57D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)滿足f(x)=x3+8(x≤0),則{x|f(x-2)<0}=( 。
A、{x|-2<x<2}
B、{x|x<-2或x>2}
C、{x|0<x<4}
D、{x|x<0或x>4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),g(x)滿足:①f(x)-ax•g(x)=0,②g(x)≠0
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,④f′(x)•g(x)<f(x)•g′(x)
,設(shè)數(shù)列{
f(n)
g(n)
}(n∈N+)
的前n項和為Sn,則Sn的取值范圍是( 。
A、(0,
1
2
)
B、[
1
2
,1)
C、[1,
3
2
)
D、[
3
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=2 
1
3
,b=3 
1
3
,c=log32 
1
2
,則( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c都是偶數(shù)”,正確的反設(shè)為( 。
A、a,b,c中至少有一個是奇數(shù)
B、a,b,c中至多有一個是奇數(shù)
C、a,b,c都是奇數(shù)
D、a,b,c中恰有一個是奇數(shù)

查看答案和解析>>

同步練習(xí)冊答案