已知直線的參數(shù)方程:.
(1)求圓的圓心坐標(biāo)和半徑;
(2)設(shè)圓上的動(dòng)點(diǎn),求的最大值.
(1)圓心的坐標(biāo)為:,半徑為2 。(2)的最大值為
【解析】
試題分析:(1)即,,所以,圓心的坐標(biāo)為,半徑為2 (4分)
(2)設(shè),,則
(6分)
(8分)
當(dāng)時(shí),的最大值為
考點(diǎn):參數(shù)方程與普通方程的互化,參數(shù)方程的應(yīng)用。
點(diǎn)評(píng):中檔題,參數(shù)方程化為普通方程,常用的“消參”方法有,代入消參、加減消參、平方關(guān)系消參等。利用參數(shù)方程,往往會(huì)將問題轉(zhuǎn)化成三角函數(shù)問題,利用三角公式及三角函數(shù)的圖象和性質(zhì),化難為易。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北唐山市高三年級(jí)摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省四地六校聯(lián)考高三上學(xué)期第二次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)本題(1)、(2)、(3)三個(gè)選答題,每小題7分,任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。
(1)(本小題滿分7分) 選修4-2:矩陣與變換
已知,若所對(duì)應(yīng)的變換把直線變換為自身,求實(shí)數(shù),并求的逆矩陣。
(2)(本題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:。
①將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
②判斷直線和圓的位置關(guān)系。
(3)(本題滿分7分)選修4-5:不等式選講
已知函數(shù)
①解不等式;
②證明:對(duì)任意,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二第二學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題
(本題滿分14分)已知直線的參數(shù)方程為, 曲線的極坐標(biāo)方程為.
(1)將直線的參數(shù)方程化為普通方程;以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,建立直角坐標(biāo)系,且在兩種坐標(biāo)系中取相同的長度單位,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若為直線上任一點(diǎn),是曲線上任一點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com