【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美.如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對(duì)稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)A(為坐標(biāo)原點(diǎn))的周長和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的優(yōu)美函數(shù).給出下列命題:

①對(duì)于任意一個(gè)圓,其優(yōu)美函數(shù)有無數(shù)個(gè);

②函數(shù)可以是某個(gè)圓的優(yōu)美函數(shù);

③正弦函數(shù)可以同時(shí)是無數(shù)個(gè)圓的優(yōu)美函數(shù)

④函數(shù)優(yōu)美函數(shù)的充要條件為函數(shù)的圖象是中心對(duì)稱圖形.

A.①④B.①③④C.②③D.①③

【答案】D

【解析】

根據(jù)定義分析,優(yōu)美函數(shù)具備的特征是,函數(shù)關(guān)于圓心(即坐標(biāo)原點(diǎn))呈中心對(duì)稱.

對(duì)①,中心對(duì)稱圖形有無數(shù)個(gè),①正確

對(duì)②,函數(shù)是偶函數(shù),不關(guān)于原點(diǎn)成中心對(duì)稱.②錯(cuò)誤

對(duì)③,正弦函數(shù)關(guān)于原點(diǎn)成中心對(duì)稱圖形,③正確.

對(duì)④,充要條件應(yīng)該是關(guān)于原點(diǎn)成中心對(duì)稱圖形,④錯(cuò)誤

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)是奇函數(shù),且滿足f3-x=fx),f-1=3,數(shù)列{an}滿足a1=1an=nan+1-an)(nN*),則fa36+fa37=( 。

A. B. C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線交于,兩點(diǎn),且與軸交于點(diǎn).

1)若直線的斜率,且,求的值;

2)若,軸上是否存在點(diǎn),總有?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上.

)求橢圓的標(biāo)準(zhǔn)方程.

)是否存在斜率為的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn),時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),離心率等于,該橢圓的一個(gè)長軸端點(diǎn)恰好是拋物線的焦點(diǎn).

1)求橢圓的方程;

2)已知直線與橢圓的兩個(gè)交點(diǎn)記為,其中點(diǎn)在第一象限,點(diǎn)、是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)、運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A2,4

1)設(shè)圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于BC兩點(diǎn),且BC=OA,求直線l的方程;

3)設(shè)點(diǎn)Tt,o)滿足:存在圓M上的兩點(diǎn)PQ,使得,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實(shí)數(shù),使得有兩個(gè)相異零點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,底面為矩形,側(cè)面為梯形,,.

1)求證:;

2)求證:平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案