【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.
(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點,求證:GH∥平面ABC.
【答案】
(1)
證明:如圖所示,
∵D是AC的中點,AB=BC,AE=EC,∴△BAC、△EAC都是等腰三角形,
∴BD⊥AC,ED⊥AC.
∵EF∥DB,∴E、F、B、D四點共面,這樣,AC垂直于平面EFBD內的兩條相交直線ED、BD,
∴AC⊥平面EFBD.
顯然,F(xiàn)B平面EFBD,∴AC⊥FB
(2)
解:已知G,H分別是EC和FB的中點,再取CF的中點O,則OG∥EF,∵OG∥BD,
∴OG∥BD,而BD平面ABC,∴OG∥平面ABC.
同理,OH∥BC,而BC平面ABC,∴OH∥平面ABC.
∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.
【解析】(1)由條件利用等腰三角形的性質,證得BD⊥AC,ED⊥AC,再利用直線和平面垂直的判定定理證得AC⊥平面EFBD,從而證得AC⊥FB.(2)再取CF的中點O,利用直線和平面平行的判定定理證明 OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,從而證得GH∥平面ABC.;本題主要考查直線和平面垂直的判定和性質,直線和平面平行的判定與性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:
【題目】從含有兩件正品a,b和一件次品c的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中,恰有一件是次品的概率。
(1)每次取出不放回;(2)每次取出放回;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】觀察下列等式:
(sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此規(guī)律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P-ABC中,底面ABCD為平行四邊形,,O為AC的中點,平面M為PD的中點。
(1)證明平面.
(2)證明平面 .
(3)求三棱錐P-MAC體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1 .
(1)求數(shù)列{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點列{An}、{Bn}分別在某銳角的兩邊上且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q表示點P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{Sn}是等差數(shù)列
B.{Sn2}是等差數(shù)列
C.{dn}是等差數(shù)列
D.{dn2}是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com