12.某大學(xué)的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)大學(xué)生的良好“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問(wèn)卷.對(duì)收回的100份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
做不到光盤能做到光盤合計(jì)
451055
301545
合計(jì)7525100
(1)若在犯錯(cuò)誤的概率不超過(guò)P的前提下認(rèn)為良好“光盤習(xí)慣”與性別有關(guān),那么根據(jù)臨界值最精確的P的值應(yīng)為多少?請(qǐng)說(shuō)明理由;
(2)現(xiàn)按女生是否做到光盤進(jìn)行分層,從45份女生問(wèn)卷中抽取了6份問(wèn)卷,若從這6份問(wèn)卷中隨機(jī)抽取2份,求兩份問(wèn)卷結(jié)果都是能做到光盤的概率.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k00.250.150.100.050.025
K01.3232.0722.7063.8405.024

分析 (1)求出K2=$\frac{100×(45×15-30×10)^{2}}{55×45×25×75}$≈3.03,由2.706<3.03<3.841,得到能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為良好“光盤行動(dòng)”與性別有關(guān),即精確值應(yīng)為0.10;
(2)按是否能做到光盤分層從45份女生問(wèn)卷中抽取了6份問(wèn)卷,則抽取到做不到光盤的人數(shù)為4人,能做到光盤的人數(shù)為2人,利用古典概型的概率公式,可得結(jié)論.

解答 解:(1)K2=$\frac{100×(45×15-30×10)^{2}}{55×45×25×75}$≈3.03,
因?yàn)?.706<3.03<3.840,
所以能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為良好“光盤習(xí)慣”與性別有關(guān),
即精確的值應(yīng)為0.10.
(2)按是否能做到光盤分層從45份女生問(wèn)卷中抽取了6份問(wèn)卷,
則抽取到做不到光盤的人數(shù)為:30×$\frac{6}{45}$=4人,能做到光盤的人數(shù)為:15×$\frac{6}{45}$=2人,
∴兩份問(wèn)卷結(jié)果都是能做到光盤的概率為$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$.

點(diǎn)評(píng) 本題考查古典概型的概率公式,考查獨(dú)立性檢驗(yàn),考查學(xué)生分析解決問(wèn)題的能力,知識(shí)綜合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=-x2+2blnx,g(x)=x+$\frac{1}{x}$兩函數(shù)有相同極值點(diǎn)
(1)求實(shí)數(shù)b的值;
(2)若對(duì)于?x1,x2∈[${\frac{1}{e}$,3](e為自然對(duì)數(shù)的底數(shù)),不等式$\frac{{f({x_1})-g({x_2})}}{k-1}$≤1恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0有且只有一解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={x|x2-3x-4<0},B={x|(x-m)[x-(m+2)]>0},若A∪B=R,則實(shí)數(shù)m的取值范圍是( 。
A.(-1,+∞)B.(-∞,2)C.(-1,2)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.“?x0∈R,x02+2x0+2≤0”的否定是?x∈R,x2+2x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知復(fù)數(shù)z=3+i(i為虛數(shù)單位),則$\frac{z}{1+i}$的模為( 。
A.2$\sqrt{2}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在?ABCD中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-12,則|$\overrightarrow{AB}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.2016年里約奧運(yùn)會(huì)和殘奧會(huì)吉祥物的名字于2015年12月14日揭曉,兩個(gè)吉祥物分別叫維尼修斯(Vinicius)和湯姆(Tom)(如圖),以此紀(jì)念巴薩諾瓦曲風(fēng)的著名音樂(lè)家Vinicius de Moraes和Tom Jobim.某商場(chǎng)抽獎(jiǎng)箱中放置了除圖案外,其他無(wú)差別的8張卡片,其中有2張印有“維尼修斯(Vinicius)“圖案,n(2≤n≤4)張印有“湯姆(Tom)”圖案,其余卡片上印有”2016年里約奧運(yùn)會(huì)“的圖案.
(1)若n=4,從抽獎(jiǎng)箱中任意取一卡片,記下圖案后放回,連續(xù)抽取三次,求三次取出的卡片中,恰有兩張印有“2016年里約奧運(yùn)會(huì)”圖案卡片的概率;
(2)從抽獎(jiǎng)箱中任意抽取兩張卡片,如果兩張卡片圖案相同的概率是$\frac{2}{7}$.求n的值;
(3)①當(dāng)n=3時(shí),隨機(jī)抽取一次,若規(guī)定取出印有“維尼修斯(Vinicius)”圖案的卡片獲得16元購(gòu)物券,取出印有“湯姆(Tom)”圖案的卡片獲得8元購(gòu)物券,取出印有“2016年里約奧運(yùn)會(huì)”的圖案的卡片沒(méi)有獎(jiǎng)勵(lì),用ξ表示獲得獎(jiǎng)券的面值,求ξ的分布列和數(shù)學(xué)期望E(ξ).
②在①的條件下,若商場(chǎng)每天有800人參與抽獎(jiǎng)活動(dòng),顧客獲得的購(gòu)物券全部用于捆綁其他商品消費(fèi),每1元購(gòu)物券能給商場(chǎng)帶來(lái)10元純利潤(rùn),則商場(chǎng)每天在這個(gè)活動(dòng)中能獲得的純利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合 P={0,1,2},若P∩(∁zQ)=∅,則集合Q可以為( 。
A.{x|x=2a,a∈P}B.{x|x=2a,a∈P}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

同步練習(xí)冊(cè)答案