【題目】某籃球隊與其他6支籃球隊依次進(jìn)行6場比賽,每場均決出勝負(fù),設(shè)這支籃球隊與其他籃球隊比賽中獲勝的事件是獨立的,并且獲勝的概率均為.

1)求這支籃球隊首次獲勝前己經(jīng)負(fù)了兩場的概率;

2)求這支籃球隊在6場比賽中恰好獲勝3場的概率;

3)求這支籃球隊在6場比賽中獲勝場數(shù)的均值.

【答案】1;(2;(32

【解析】

1)首次獲勝前已經(jīng)負(fù)了兩場說明已經(jīng)比賽三場,前兩場輸,第三場嬴,用乘法公式即可求得概率;

26場比賽中恰好獲勝3場的情況有,比賽六場勝三場,故用乘法公式即可.

3)由于服從二項分布,即,由公式即可得出籃球隊在6場比賽中獲勝場數(shù)的期望.

解:(1)這支籃球隊首次獲勝前已經(jīng)負(fù)了兩場的概率為

26場比賽中恰好獲勝3場的情況有

故概率為

3)由于X服從二項分布,即,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知若橢圓)交軸于,兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的兩個零點之差的絕對值的最小值為,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則下列說法正確的是(

①函數(shù)的最小正周期為;②函數(shù)的圖象關(guān)于點()對稱;

③函數(shù)的圖象關(guān)于直線對稱;④函數(shù)上單調(diào)遞增.

A.①②③④B.①②C.②③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒中有6只燈泡,其中2只次品,4只正品,有放回地從中任取兩次,每次取一只,試求下列事件的概率:

(1)取到的2只都是次品;

(2)取到的2只中正品、次品各一只;

(3)取到的2只中至少有一只正品、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】件產(chǎn)品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽.求:(1)第一次抽到次品的概率;

2)第一次和第二次都抽到次品的概率;

3)在第一次抽到次品的條件下,第二次抽到次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1為曲線的動點,點在線段上,且滿足,求點的軌跡的直角坐標(biāo)方程;

2)設(shè)點的極坐標(biāo)為,點在曲線上,求面積的最大值及此時點坐標(biāo).

3)設(shè)直線與曲線交于點,若點的坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以為直徑的半圓上異于點的點,矩形所在的平面垂直于該半圓所在平面,且

(Ⅰ)求證:

(Ⅱ)設(shè)平面與半圓弧的另一個交點為,

求證://;

,求三棱錐E-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的左、右焦點分別為,作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】變量XY相對應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量UV相對應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示變量YX之間的線性相關(guān)系數(shù),r2表示變量VU之間的線性相關(guān)系數(shù),則

A. r2<r1<0 B. r2<0<r1 C. 0<r2<r1 D. r2r1

查看答案和解析>>

同步練習(xí)冊答案