已知sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
π
2
<θ<π),則tanθ=
 
考點:同角三角函數(shù)間的基本關系
專題:計算題
分析:利用同角三角函數(shù)間的基本關系得到sin2θ+cos2θ=1,將已知的兩等式代入,列出關于m的方程,求出方程的解得到m的值,確定出sinθ與cosθ的值,即可求出tanθ的值.
解答: 解:∵sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,且sin2θ+cos2θ=1,
∴(
m-3
m+5
2+(
4-2m
m+5
2=1,即m(m-8)=0,
解得:m=0或m=8,
當m=0時,由
π
2
<θ<π,得到sinθ>0,而sinθ=-
3
5
<0,不合題意,舍去;
故m=8,
∴sinθ=
5
13
,cosθ=-
12
13
,
則tanθ=
sinθ
cosθ
=-
5
12
點評:此題考查了同角三角函數(shù)間的基本關系,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)圖象的相鄰兩對稱軸間的距離為
π
2
,若將函數(shù)f(x)的圖象向左平移
π
6
個單位后圖象關于y軸對稱.
(Ⅰ)求使f(x)≥
1
2
成立的x的取值范圍;
(Ⅱ)設g(x)=-g′(
π
3
)sin(
1
2
ωx)+
3
cos(
1
2
ωx)
,其中g'(x)是g(x)的導函數(shù),若g(x)=
2
7
,且
π
2
<x<
3
,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)f(x)中,滿足“對任意x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0”的是( 。
A、f(x)=lnx
B、f(x)=(x-1)2
C、f(x)=
1
x+1
D、f(x)=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2x-1
+
1
2

(Ⅰ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅱ)若對于任意x∈[2,4],不等式f(
x+1
x-1
)<f(
m
(x-1)2(7-x)
)
恒成立,求正實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2+2x-2y-7=0的半徑是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a1+a2=2,a7+a8=8,該數(shù)列前十項的和S10=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a-
6
2x+1

(1)若函數(shù)f(x)是奇函數(shù),求實數(shù)a的值;
(2)求證:不論a為何實數(shù),函數(shù)f(x)是增函數(shù);
(3)若f(1)=2,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合M={x|x2-x>0},則∁UM=( 。
A、{x|0<x<1}
B、{x|0≤x≤1}
C、{x|x<0或x>1}
D、{x|x≤0或x≥1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
25
+
y2
9
=1的焦點為F1,F(xiàn)2,
(1)P為橢圓上的一點,已知
PF1
PF2
=0,求△F1PF2的面積;
(2)動點P在橢圓的一動點,定點M(8,0),求PM中點Q軌跡方程.

查看答案和解析>>

同步練習冊答案