【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程;
(2)設(shè)點M的極坐標(biāo)為,過點M的直線與曲線C交于A、B兩點,若,求.
【答案】(1);(2)3.
【解析】
試題(1)由曲線C的參數(shù)方程先求出曲線C的直角坐標(biāo)方程,由此能求出曲線C的極坐標(biāo)方程.
(2)先求出直線l的參數(shù)方程,與曲線C的直角坐標(biāo)方程聯(lián)立,得t2+2(cosθ-sinθ)t-2=0,由此能求出AB的弦長.
試題解析:
(1)由(為參數(shù)),得,即,所以 .
(2)M的極坐標(biāo)為,M的直角坐標(biāo)為(1, 1)
設(shè)直線的參數(shù)方程是(為參數(shù))
曲線的直角坐標(biāo)方程是,
聯(lián)立方程可得,設(shè)是方程的兩根,則,
且,所以,則或,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了落實國務(wù)院“提速降費”的要求,某市移動公司欲下調(diào)移動用戶消費資費.已知該公司共有移動用戶10萬人,人均月消費50元.經(jīng)測算,若人均月消費下降x%,則用戶人數(shù)會增加萬人.
(1)若要保證該公司月總收入不減少,試求x的取值范圍;
(2)為了布局“5G網(wǎng)絡(luò)”,該公司擬定投入資金進行5G網(wǎng)絡(luò)基站建設(shè),投入資金方式為每位用戶月消費中固定劃出2元進入基站建設(shè)資金,若使該公司總盈利最大,試求x的值.
(總盈利資金=總收入資金-總投入資金)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點,離心率為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于,兩點,為橢圓的左焦點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機械廠要將長,寬的長方形鐵皮進行裁剪.已知點為的中點,點在邊上,裁剪時先將四邊形沿直線翻折到處(點,分別落在直線下方點,處,交邊于點,再沿直線裁剪.
(1)當(dāng)時,試判斷四邊形的形狀,并求其面積;
(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,記隨機變量表示質(zhì)量在內(nèi)的芒果個數(shù),求的分布列及數(shù)學(xué)期望.
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來收購芒果,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質(zhì)量低于克的芒果以元/個收購,高于或等于克的以元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在多面體中,底面是梯形,四邊形是正方形,,,面面,..
(1)求證:平面平面;
(2)設(shè)為線段上一點,,試問在線段上是否存在一點,使得平面,若存在,試指出點的位置;若不存在,說明理由?
(3)在(2)的條件下,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1到6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見下表:
該院確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的兩個月的概率;
(Ⅱ)已知選取的是1月與6月的兩組數(shù)據(jù).
(1)請根據(jù)2到5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該協(xié)會所得線性回歸方程是否理想?
(參考公式和數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標(biāo),對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分
布直方圖:
(1)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(2)若從該運動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運動員投籃命中時,他到籃筐中心的水平距離越遠(yuǎn)越好),并從抽到的這7次成績中隨機抽取2次.規(guī)定:這2次成績均來自到籃筐中心的水平距離為4到5米的這一組,記 1分,否則記0分.求該運動員得1分的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com