【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為是參數(shù))以原點為極點,軸的非負半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的普通方程和的直線直角坐標(biāo)方程;

2)設(shè)直線軸交點分別是,點是圓上的動點,求的面積的最小值.

【答案】1,;(2)4.

【解析】

1)移項平方可以消去參數(shù),得到普通方程,極坐標(biāo)方程利用轉(zhuǎn)化公式可得直角坐標(biāo)方程;

2)先求圓心到直線的距離,利用圓的對稱性可得圓上一點到直線的距離最小值,從而可得面積的最小值.

1)由,

消去參數(shù),得,

所以圓的普通方程為.

,

,化成直角坐標(biāo)為,

所以直線直角坐標(biāo)方程為.

2)由(1)知,

圓心到直線的距離為

所以點到直線的距離的最小值為,

所以的面積的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為極點軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),點的極坐標(biāo)為,設(shè)直線與曲線相交于兩點

1寫出曲線的直角坐標(biāo)方程和直線的普通方程;

2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四張卡片,分別寫有學(xué)、習(xí)、強、國四個字,有放回地從中任取一張卡片,將三次抽取后“學(xué)”“習(xí)”兩個字都取到記為事件,用隨機模擬的方法估計事件發(fā)生的概率,利用電腦隨機產(chǎn)生整數(shù)0,1,23四個隨機數(shù),分別代表學(xué)、習(xí)、強、國這四個字,以每三個隨機數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

232

321

210

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計事件發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>,再將所得圖象向右平移個單位,若得到的圖象關(guān)于原點對稱,則當(dāng)時,的值域為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,左右焦點分別為,,離心率為,右焦點到右頂點的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點,,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的棱長均為2,OAC的中點,平面A'OB平面ABC,平面平面ABC.

1)求證:A'O⊥平面ABC

2)求二面角ABCC'的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的201810月份至20199月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是(

A.12個月的PMI值不低于50%的頻率為

B.12個月的PMI值的平均值低于50%

C.12個月的PMI值的眾數(shù)為49.4%

D.12個月的PMI值的中位數(shù)為50.3%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】角中,角AB、C的對邊分別是a、b、c,若

1)求角A;

2)若的面積為,求的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng),

①求函數(shù)在點處的切線方程;

②比較的大小;

2)當(dāng)時,若對時,,且有唯一零點,證明:

查看答案和解析>>

同步練習(xí)冊答案