【題目】某學(xué)校的特長班有名學(xué)生,其中有體育生名,藝術(shù)生名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測試,心率全部介于次/分到次/分之間.現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五章,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.
(1)求的值,并求這名同學(xué)心率的平均值;
(2)因?yàn)閷W(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機(jī)抽取一名,該學(xué)生是體育生的概率為,請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為心率小于次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)?說明你的理由.
心率小于60次/分 | 心率不小于60次/分 | 合計(jì) | |
體育生 | 20 | ||
藝術(shù)生 | 30 | ||
合計(jì) | 50 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
【答案】(1)1,63.7;(2)有的把握認(rèn)為心率小于次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)
【解析】試題分析:(1)求出各組的頻數(shù),即可求a的值和50名同學(xué)的心率平均值.
(2)列出二聯(lián)表,代入公式求做出判斷即可.
試題解析:
(Ⅰ)因?yàn)榈诙M數(shù)據(jù)的頻率為,故第二組的頻數(shù)為,所以第一組的頻數(shù)為,第三組的頻數(shù)為20,第四組的頻數(shù)為16,第五組的數(shù)為4.所以 ,故.
這50名同學(xué)的心率平均值為 .
(Ⅱ)由(Ⅰ)知,第一組和第二組的學(xué)生(即心率小于60次/分的學(xué)生)共10名,從而體育生有名,故列聯(lián)表補(bǔ)充如下.
心率小于60次/分 | 心率不小于60次/分 | 合計(jì) | |
體育生 | 8 | 12 | 20 |
藝術(shù)生 | 2 | 28 | 30 |
合計(jì) | 10 | 40 | 50 |
所以 ,
故有99.5%的把握認(rèn)為心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為
A. 11π B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點(diǎn),為上一點(diǎn),交于點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標(biāo)方程為.
()求的極坐標(biāo)方程與的直角坐標(biāo)方程.
()若是上任意一點(diǎn),過點(diǎn)的直線交于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以為頂點(diǎn)的六面體中,和均為等邊三角形,,且平面平面,平面,是的中點(diǎn),連接.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,
側(cè)棱平面,為等腰直角三角形,,且,分別是的中點(diǎn).
(Ⅰ)求證:①平面;
②平面;
(Ⅱ)求直線與平面所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓: ,長軸的右端點(diǎn)與拋物線: 的焦點(diǎn)重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作直線交拋物線于, 兩點(diǎn),過且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以、、、、、為頂點(diǎn)的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com