【題目】已知橢圓C:的左焦點為,且點在C上.
求C的方程;
設(shè)點P關(guān)于x軸的對稱點為點不經(jīng)過P點且斜率為k的直線l與C交于A,B兩點,直線PA,PB分別與x軸交于點M,N,若,求k.
【答案】(1);(2)
【解析】
(1)根據(jù)橢圓的定義可求出a,再根據(jù)半焦距c,可求得b,則C的方程可寫出;
(2)根據(jù)兩個角相等,推出兩直線斜率為相反數(shù),設(shè)出直線PA,與橢圓聯(lián)立可解得A的坐標(biāo),同理得B的坐標(biāo),最后用斜率公式可求得斜率.
設(shè)右焦點為,則,
由題意知,,
由橢圓的定義,得,所以,
又橢圓C的半焦距,所以,
所以橢圓C的方程為,
由點P關(guān)于x軸的對稱點為點q,則軸.
如圖所示,由,得.
設(shè)直線PA的方程為,,
則直線PB的方程為.
設(shè),
由得,
且,即.
由于直線PA與C交于P,A兩點,
所以,;
同理可得,,
所以.
綜上,得直線l的斜率k為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,沿AB將△ADC翻折成.設(shè)二面角的平面角為,直線與直線BC所成角為,直線與平面ABC所成角為,當(dāng)為銳角時,有
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,橢圓分別為橢圓的左、右焦點.
(1)當(dāng)直線過右焦點時,求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點,為坐標(biāo)原點,且,若點在以線段為直徑的圓內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司印制了一批文化衫,每件文化衫可有紅、黃、藍(lán)三種不同的顏色和四種不同的圖案.現(xiàn)將這批文化衫分發(fā)給名新員工,每名員工恰好分到圖案不同的4件.試求的最小值,使得總存在兩個人,他們所分到的某兩種圖案的4件文化衫的顏色全部相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市南澳縣是廣東唯一的海島縣,海區(qū)面積廣闊,發(fā)展太平洋牡蠣養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢,所產(chǎn)的“南澳牡蠣”是中國國家地理標(biāo)志產(chǎn)品,產(chǎn)量高、肉質(zhì)肥、營養(yǎng)好,素有“海洋牛奶精品”的美譽.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,產(chǎn)自某南澳牡蠣養(yǎng)殖基地的單個“南澳牡蠣”質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)購買10只該基地的“南澳牡蠣”,會買到質(zhì)量小于20g的牡蠣的可能性有多大?
(2)2019年該基地考慮增加人工投入,現(xiàn)有以往的人工投入增量x(人)與年收益增量y(萬元)的數(shù)據(jù)如下:
人工投入增量x(人) | 2 | 3 | 4 | 6 | 8 | 10 | 13 |
年收益增量y(萬元) | 13 | 22 | 31 | 42 | 50 | 56 | 58 |
該基地為了預(yù)測人工投入增量為16人時的年收益增量,建立了y與x的兩個回歸模型:
模型①:由最小二乘公式可求得y與x的線性回歸方程:;
模型②:由散點圖的樣本點分布,可以認(rèn)為樣本點集中在曲線:的附近,對人工投入增量x做變換,令,則,且有.
(i)根據(jù)所給的統(tǒng)計量,求模型②中y關(guān)于x的回歸方程(精確到0.1);
(ii)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測人工投入增量為16人時的年收益增量.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
| 182.4 | 79.2 |
附:若隨機變量,則,;
樣本的最小二乘估計公式為:,
另,刻畫回歸效果的相關(guān)指數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,底面為菱形, , , 與相交于點,四邊形為直角梯形, , , ,平面底面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點的直線交C于A,B兩點,拋物線C在點A處的切線與在點B處的切線交于點P.
(1)若直線的斜率為1,求;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、、為大于3的整數(shù),將的立方體分割為個單位正方體,從一角的單位正方體起第層、第行、第列的單位正方體記為.求所有有序六元數(shù)組的個數(shù),使得一只螞蟻從出發(fā),經(jīng)過每個小正方體恰一次到達(dá).(注)螞蟻可以從一個單位正方體爬到另一個與之有公共面的相鄰正方體.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com