【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρasinθa≠0.

1)求圓C的直角坐標(biāo)方程與直線l的普通方程;

2)設(shè)直線l截圓C的弦長(zhǎng)是半徑長(zhǎng)的倍,求a的值.

【答案】(1)圓C的方程為;直線l的方程為;

(2).

【解析】

1)結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得圓C的直角坐標(biāo)方程,消去參數(shù),即可求得直線l的普通方程;

2)由(1)中直線和圓的方程,結(jié)合直線與圓的位置關(guān)系,利用題設(shè)條件和點(diǎn)到直線的距離公式,列出方程,即可求解.

1)由題意,圓C的極坐標(biāo)方程為,即,

又由,所以,即圓C的直角坐標(biāo)方程為,

由直線l的參數(shù)方程為為參數(shù)),可得為參數(shù)),

兩式相除,化簡(jiǎn)得直線l的普通方程為.

2)由(1)得圓C,直線l,

因?yàn)橹本l截圓C的弦長(zhǎng)等于圓C的半徑長(zhǎng)的倍,

所以圓心C到直線l的距離,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示七面體中,平面,平面平面,四邊形是邊長(zhǎng)為2的菱形,,,M,N分別為的中點(diǎn).

1)求證:平面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若函數(shù)的圖象上存在關(guān)于原點(diǎn)對(duì)稱的點(diǎn),求實(shí)數(shù)的取值范圍;

2)設(shè),已知上存在兩個(gè)極值點(diǎn),,且,求證:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬(wàn)戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長(zhǎng),回收價(jià)值越低,某二手電腦交易市場(chǎng)對(duì)2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對(duì)時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.

(1)若在該市場(chǎng)隨機(jī)選取1個(gè)2018年成交的二手電腦,求其使用時(shí)間在上的概率;

(2)根據(jù)電腦交易市場(chǎng)往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,其中(單位:年)表示折舊電腦的使用時(shí)間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.

由散點(diǎn)圖判斷,可采用作為該交易市場(chǎng)折舊電腦平均交易價(jià)格與使用年限的回歸方程,若,,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)在區(qū)間(用時(shí)間組的區(qū)間中點(diǎn)值代表該組的值)上折舊電腦的價(jià)格.

5.5

8.5

1.9

301.4

79.75

385

附:參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.(為自然對(duì)數(shù)的底數(shù))

(1)設(shè)

①若函數(shù)處的切線過(guò)點(diǎn),求的值;

②當(dāng)時(shí),若函數(shù)上沒(méi)有零點(diǎn),求的取值范圍.

(2)設(shè)函數(shù),且,求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間、、、、時(shí),其對(duì)應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染.如圖為某市2019101日至107日的空氣質(zhì)量指數(shù)直方圖,在這7天內(nèi),下列結(jié)論正確的是( )

A.4的方差小于后3的方差

B.7天內(nèi)空氣質(zhì)量狀況為嚴(yán)重污染的天數(shù)為3

C.7天的平均空氣質(zhì)量狀況為良

D.空氣質(zhì)量狀況為優(yōu)或良的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,,側(cè)面為等邊三角形且垂直于底面的中點(diǎn).

(1)在棱上取一點(diǎn)使直線∥平面并證明;

(2)在(1)的條件下,當(dāng)棱上存在一點(diǎn),使得直線與底面所成角為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)),將曲線經(jīng)過(guò)伸縮變換后得到曲線,在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面五邊形中,,,是邊長(zhǎng)為2的正三角形.現(xiàn)將沿折起,得到四棱錐(如圖2),且.

1)求證:平面平面

2)在棱上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案