【題目】已知橢圓的上頂點為,右焦點為,直線與圓相切.
(1)求橢圓的方程;
(2)若不過點的動直線與橢圓交于兩點,且,試探究:直線是否過定點,若是,求該定點的坐標,若不是,請說明.
【答案】(1);(2)直線過定點.
【解析】
(1)由題意知直線的方程為, 由直線與圓相切,得進而求解方程。
(2)證法一:由知,設直線的方程為,直線的方程為.聯(lián)立,整理得,求解點,點,進而表示出直線方程求解。
(1)圓的圓心為,半徑
由題意知,,
直線的方程為,即,
由直線與圓相切,得,
解得,,
故橢圓的方程為.
(2)證法一:由知,從而直線與坐標軸不垂直,故可設直線的方程為,直線的方程為.
聯(lián)立,整理得,
解得或,故點的坐標為,
同理,點的坐標為,
∴直線的斜率為,
∴直線的方程為,
即.
所以直線過定點.
證法二:由,知,從而直線與軸不垂直,故可設直線的方程為,
聯(lián)立,整理得.
設,,則,,(*)
由得.
由,
得,
將(*)代入,得,
所以直線過定點.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處取得極值.
Ⅰ求實數(shù)a的值;
Ⅱ若關于x的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
Ⅲ證明:參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)是偶函數(shù).
(1)若不等式對任意實數(shù)成立,求實數(shù)的取值范圍;
(2)設函數(shù),若在上有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系x-O-y中,已知曲線E:(t為參數(shù))
(1)在極坐標系O-x中,若A、B、C為E上按逆時針排列的三個點,△ABC為正三角形,其中A點的極角θ=,求B、C兩點的極坐標;
(2)在直角坐標系x-O-y中,已知動點P,Q都在曲線E上,對應參數(shù)分別為t=α與t=2α (0<α<2π),M為PQ的中點,求 |MO| 的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學作為藍色海洋教育特色學校,隨機抽取100名學生,進行一次海洋知識測試,按測試成績(假設考試成績均在[65,90)內)分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.
(1)求測試成績在[80,85)內的頻率;
(2)從第三、四、五組學生中用分層抽樣的方法抽取6名學生組成海洋知識宣講小組,定期在校內進行義務宣講,并在這6名學生中隨機選取2名參加市組織的藍色海洋教育義務宣講隊,求第四組至少有1名學生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了弘揚傳統(tǒng)文化,某市舉辦了“高中生詩詞大賽”,現(xiàn)從全市參加比賽的學生中隨機抽取人的成績進行統(tǒng)計,得到如圖所示的頻率分布直方圖,其中成績的分組區(qū)間為,,,.
(1)求頻率分布直方圖中的值;
(2)在所抽取的名學生中,用分層抽樣的方法在成績?yōu)?/span>的學生中抽取了一個容量為的樣本,再從該樣本中任意抽取人,求人的成績均在區(qū)間內的概率;
(3)若該市有名高中生參賽,根據(jù)此次統(tǒng)計結果,試估算成績在區(qū)間內的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100,水溫與時間近似滿足一次函數(shù)關系;②用開水將熱飲沖泡后在室溫下放置,溫度與時間近似滿足函數(shù)的關系式為 (為常數(shù)), 通常這種熱飲在40時,口感最佳,某天室溫為時,沖泡熱飲的部分數(shù)據(jù)如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時飲用,最少需要的時間為
A. 35 B. 30
C. 25 D. 20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com