(1)已知函數(shù)f(x+1)=x2-3x+2,求f(x);
(2)已知f(+4)=x+8,求f(x2);
(3)已知函數(shù)y=f(x),滿足2f(x)+f()=2x,x∈R且x≠0,求f(x);
(4)已知一次函數(shù)f(x)滿足f[f(x)]=4x-1,求f(x).
解析:求函數(shù)的解析式關(guān)鍵在于弄清對(duì)于“x”而言,“f”是怎樣的對(duì)應(yīng)法則,至于選擇什么符號(hào)表示自變量沒有關(guān)系.(1)把x+1看成整體,利用換元法可以求出原來(lái)的函數(shù)f(x);(2)利用配方法或換元法;(3)對(duì)于較復(fù)雜的函數(shù)解析式,如函數(shù)y=f(x),滿足2f(x)+f()=2x,x∈R且x≠0.如果我們將f(x)、f()看作是整體,則本題可轉(zhuǎn)化為一個(gè)關(guān)于f(x)、f()的方程問(wèn)題;(4)由于已知f(x)是一次函數(shù),因此可設(shè)f(x)=ax+b(a≠0),利用待定系數(shù)法求出a,b.
解:(1)令t=x+1,則x=t-1,代入得f(t)=(t-1)2-3(t-1)+2,
∴f(t)=t2-5t+6,即f(x)=x2-5x+6.
也可以用配方法.
∵f(x+1)=x2-3x+2=(x+1)2-5x+1=(x+1)2-5(x+1)+6,
∴f(x)=x2-5x+6.
(2)解法一:∵f(+4)=x+8=(+4)2-16,
∴f(x)=x2-16(x≥4).∴f(x2)=x4-16(x≤-2或x≥2).
解法二:設(shè)+4=t≥4,則=t-4,x=(t-4)2,
∴f(t)=(t-4)2+8(t-4)=t2-16.∴f(x)=x2-16(x≥4).
∴f(x2)=x4-16(x≤-2或x≥2).
(3)由2f(x)+f()=2x ①
將x換成,則換成x,得
2f()+f(x)= ②
①×2-②,得3f(x)=4x-,即f(x)=-.
(4)因?yàn)閒(x)是一次函數(shù),設(shè)f(x)=ax+b(a≠0),
則f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b=4x-1.
∴或
∴f(x)=2x-或f(x)=-2x+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:044
已知長(zhǎng)方體ABCD-,點(diǎn)E、F分別是上底面和面CD的中心,求下列各題中x、y、z的值:
(1);
(2);
(3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1) =x+y+z;
(2) =x+y+z;
(3) =x+y+z.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1);
(2);
(3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1);
(2);
(3).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com