如圖,在四棱錐中,平面四邊形為正方形,點在上的射影為點.

(1)求證:平面
(2)在棱上是否存在一點,使得平面.若存在,求出的長;若不存在,請說明理由.
(1)見解析    (2) .
(1)由已知得,要證平面,關(guān)鍵是證,由已知易證出,結(jié)論得證;(2)假設(shè)存在一點,使得平面,再作,得到面面平行,根據(jù)面面平行的性質(zhì)定理得線線平行,把要求的轉(zhuǎn)化為求利用三角形相似,對應(yīng)線段成比例計算得的值。
(1)
(2)假設(shè)棱存在一點,使.過,連,則,它們都與平面相交,設(shè),則,可求 即,因此存在點滿足題意,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)如圖, 在直三棱柱中,,,
,點的中點.

⑴求證:
⑵求證:平面;
⑶求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四面體ABCD中,CB=CD,AD⊥BD,點E,F(xiàn)分別是AB,BD的中點.

(Ⅰ)求證:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,
求三棱錐B-ADC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,多面體中,是梯形,,是矩形,平面平面,.

(1)求證:平面;
(2)若是棱上一點,平面,求;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點,證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

四棱錐的底面為正方形,⊥底面,則下列結(jié)論中不正確的是(  )
 
A.
B.平面
C.與平面所成的角等于與平面所成的角
D.所成的角等于所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱長為的正四面體中,若、分別是棱、的中點,則=
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a,b為兩條不重合的直線,為兩個不重合的平面,下列命題中為真命題的是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知一個三棱錐的三視圖如圖所示,其中主視圖、俯視圖是全等的等腰直角三角形,則該三棱錐的外接球半徑為(   )
A.3B.4
C.5D.6

查看答案和解析>>

同步練習(xí)冊答案