5、函數(shù)f(x)=xe-x的(  )
分析:求出f(x)的導函數(shù),令導函數(shù)等于0求出x的值,利用x的值分區(qū)間討論導函數(shù)的正負,得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的增減性進而得到函數(shù)的極大值.
解答:解:令f′(x)=(1-x)e-x=0,解得x=1,
所以當x變化時,f(x)和f′(x)的變化情況如圖所示:

所以函數(shù)的極大值為f(1)=e-1
故選A
點評:此題考查學生會利用導函數(shù)的正負得出函數(shù)的單調(diào)區(qū)間,并根據(jù)函數(shù)的增減性得到函數(shù)的極值,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題中正確的有
 
.(填上所有正確命題的序號)
①若f(x)可導且f'(x0)=0,則x0是f(x)的極值點;
②函數(shù)f(x)=xe-x,x∈[2,4]的最大值為2e-2
③已知函數(shù)f(x)=
-x2+2x
,則_1f(x)dx的值為
π
4

④一質(zhì)點在直線上以速度v=t2-4t+3(m/s)運動,從時刻t=0(s)到t=4(s)時質(zhì)點運動的路程為
4
3
(m)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xe-x,x∈[2,4]的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xe-x的單調(diào)增區(qū)間是
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xe-x+(x-2)ex-a(e≈2.73).
(1)當a=2時,證明函數(shù)f(x)是增函數(shù);
(2)當x≥1時,f(x)≥
(x-1)2ex
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案