19.設(shè)f'(x)是函數(shù)f(x)的導(dǎo)數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的拐點(diǎn).某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點(diǎn),任何一個(gè)三次函數(shù)都有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心,
設(shè)函數(shù)g(x)=x3-3x2+4x+2,利用上述探究結(jié)果
計(jì)算:$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=76.

分析 根據(jù)函數(shù)g(x)的解析式求出g′(x)和g″(x),令g″(x)=0,求得x的值,由此求得三次函數(shù)g(x)的對(duì)稱中心.由于函數(shù)的對(duì)稱中心為(1,4),可知g(x)+f(2-x)=8,由此能夠求出所給的式子的值.

解答 解:由g(x)=x3-3x2+4x+2,
得:g′(x)=3x2-6x+4,g″(x)=6x-6,
令g″(x)=0,解得:x=1,
∴函數(shù)g(x)的對(duì)稱中心是(1,4),
∴g(2-x)+g(x)=8,
故設(shè)$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=m,
則g($\frac{19}{10}$)+g($\frac{18}{10}$)+g($\frac{17}{10}$)+…+g($\frac{1}{10}$)=m,
兩式相加得:8×19=2m,解得:m=76,
故答案為:76.

點(diǎn)評(píng) 本小題主要考查函數(shù)與導(dǎo)數(shù)等知識(shí),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查化簡計(jì)算能力,求函數(shù)的值以及函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在三棱錐P-ABC中,△PAB和△PAC均為邊長是$\sqrt{2}$的正三角形,且∠BAC=90°,O為BC的中點(diǎn).
(Ⅰ)證明:PO⊥平面ABC;
(Ⅱ)求直線PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某人從甲地去乙地共走了500m,途經(jīng)一條寬為x m的河流,該人不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知該物品能被找到的概率為$\frac{24}{25}$,則河寬為( 。
A.80 mB.20 mC.40 mD.50 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.一個(gè)盒子中裝有5個(gè)紅球,3個(gè)黃球,2個(gè)黑球,每次任取一個(gè)球,觀察其顏色后放回,如此繼續(xù),求在取得黃球之前取得紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中幾錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾
組對(duì)應(yīng)數(shù)據(jù)如表所示:
x3456
y2.534a
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=0.7x+0.35,則表中a的值為( 。
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)的定義域?yàn)镽,M為常數(shù).若p:對(duì)?x∈R,都有f(x)≥M;q:M是函數(shù)f(x)的最小
值,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.甲、乙兩位射擊運(yùn)動(dòng)員,在某天訓(xùn)練中已各射擊10次,每次命中的環(huán)數(shù)如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通過計(jì)算估計(jì),甲、乙二人的射擊成績誰更穩(wěn);
(Ⅱ)若規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,以頻率作為概率,請(qǐng)依據(jù)上述數(shù)據(jù)估計(jì),求甲在第11至
第13次射擊中獲得獲得優(yōu)秀的次數(shù)ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)向量$\overrightarrow{m}$=(2x-1,3),向量$\overrightarrow{n}$=(1,-1),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則實(shí)數(shù)x的值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解關(guān)于x的不等式:
①x2-5x-6<0                       
②$\frac{x-1}{x+2}$≤0.

查看答案和解析>>

同步練習(xí)冊答案