6、在(1+x)n的展開(kāi)式中,奇數(shù)項(xiàng)的和為P,偶數(shù)項(xiàng)的和為Q,則(1-x2n=(  )
分析:利用二項(xiàng)式定理得到(1+x)n與(1-x)n的奇數(shù)項(xiàng)相同,偶數(shù)項(xiàng)相反;利用平方差公式將(1-x2n用(1+x)n與(1-x)n表示,求出值.
解答:解:(1+x)n=p+Q;(1-x)n=p-Q
∴(1-x2n=(1+x)n(1-x)n=(p+Q)(p-Q)=p2-Q2
故選B
點(diǎn)評(píng):本題考查通過(guò)二項(xiàng)式定理判斷出(1+x)n與(1-x)n展開(kāi)式的關(guān)系;考查平方差公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省自貢市2012屆高三第一次診斷性考試數(shù)學(xué)文科試題 題型:022

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達(dá)式.綜合①、②可得到某些恒等式,利用上述思想方法,可得到恒等式:

_________(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=________ n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省自貢市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省廣州市名師高考數(shù)學(xué)模擬試試卷(解析版) 題型:解答題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開(kāi),逐個(gè)求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案