1.正棱錐S-ABCD的底面邊長(zhǎng)為4,高為1,求:
(1)棱錐的側(cè)棱長(zhǎng)和斜高;
(2)棱錐的表面積.

分析 (1)設(shè)SO為正四棱錐S-ABCD的高,則SO=1,作OM⊥BC,則M為BC 中點(diǎn),連結(jié)OM,OB,則SO⊥OB,SO⊥OM,由此能求出棱錐的側(cè)棱長(zhǎng)和斜高.
(2)棱錐的表面積S=S正方形ABCD+4S△SBC,由此能求出結(jié)果.

解答 解:(1)設(shè)SO為正四棱錐S-ABCD的高,則SO=1,
作OM⊥BC,則M為BC 中點(diǎn),
連結(jié)OM,OB,則SO⊥OB,SO⊥OM,
BC=4,BM=2,則OM=2,OB=2$\sqrt{2}$,
在Rt△SOD中,SB=$\sqrt{S{O}^{2}+O{B}^{2}}$=$\sqrt{1+8}=3$,
在Rt△SOM中,SM=$\sqrt{5}$,
∴棱錐的側(cè)棱長(zhǎng)為3,斜高為$\sqrt{5}$.
(2)棱錐的表面積:
S=S正方形ABCD+4S△SBC
=$4×4+4×(\frac{1}{2}×4×\sqrt{5})$
=16+8$\sqrt{5}$.

點(diǎn)評(píng) 本題考查棱錐的側(cè)棱長(zhǎng)和斜高及棱錐的表面積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的兩個(gè)相鄰的對(duì)稱(chēng)中心分別為(${\frac{π}{8}$,0),(${\frac{5π}{8}$,0).
(Ⅰ)求f(x)的解析式及其對(duì)稱(chēng)軸方程;
(Ⅱ)利用五點(diǎn)法畫(huà)出函數(shù)f(x)在[$\frac{π}{8}$,$\frac{9π}{8}}$]上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在某次測(cè)量中得到的A樣本的莖葉圖如圖所示,則該樣本的中位數(shù)、眾數(shù)、極差分別是( 。
A.47,45,56B.46,45,53C.45,47,53D.46,45,56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$的共軛復(fù)數(shù)等于( 。
A.iB.-iC.$\sqrt{3}$+iD.$\sqrt{3}$-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合A={x|$\frac{1}{2}$≤2x≤4},B={x|lg(x-1)≤1},則A∩B=(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC的周長(zhǎng)為10,且A(-2,0),B(2,0),則C點(diǎn)的軌跡方程是( 。
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)
C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1(y≠0)D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.當(dāng)x∈[-$\frac{π}{3}$,$\frac{2π}{3}$]時(shí),y=3-2sinx-2cos2x的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.給出下列類(lèi)比推理:
①已知a,b∈R,若a-b=0,則a=b,類(lèi)比得已知z1,z2∈C,若z1-z2=0,則z1=z2;
②已知a,b∈R,若a-b>0,則a>b,類(lèi)比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
③由實(shí)數(shù)絕對(duì)值的性質(zhì)|x|2=x2類(lèi)比得復(fù)數(shù)z的性質(zhì)|z|2=z2
其中推理結(jié)論正確的是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知四棱錐P-ABCD,底面ABCD為菱形,△PAB是等邊三角形,∠ABC=60°,AB=2,PC=$\sqrt{6}$
(1)證明:平面PAB⊥平面ABCD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案