【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大。
(Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.
【答案】解:(Ⅰ)證明因?yàn)榈酌鍭BCD是菱形,∠ABC=60°,
所以AB=AD=AC=a,在△PAB中,
由PA2+AB2=2a2=PB2知PA⊥AB.
同理,PA⊥AD,所以PA⊥平面ABCD.
(Ⅱ)解:作EG∥PA交AD于G,
由PA⊥平面ABCD.
知EG⊥平面ABCD.作GH⊥AC于H,連接EH,
則EH⊥AC,∠EHG即為二面角θ的平面角.
又PE:ED=2:1,所以 .
從而 ,θ=30°.
(Ⅲ)解法一以A為坐標(biāo)原點(diǎn),直線AD、AP分別為y軸、z軸,過(guò)A點(diǎn)垂直平面PAD的直線為x軸,建立空間直角坐標(biāo)系如圖.
由題設(shè)條件,相關(guān)各點(diǎn)的坐標(biāo)分別為 . .
所以 . . .
設(shè)點(diǎn)F是棱PC上的點(diǎn), ,其中0<λ<1,
則 = .
令 得 即
解得 .即 時(shí), .
亦即,F(xiàn)是PC的中點(diǎn)時(shí), 、 、 共面.
又BF平面AEC,所以當(dāng)F是棱PC的中點(diǎn)時(shí),BF∥平面AEC.
解法二:當(dāng)F是棱PC的中點(diǎn)時(shí),BF∥平面AEC,證明如下,
證法一:取PE的中點(diǎn)M,連接FM,則FM∥CE.①
由 ,知E是MD的中點(diǎn).
連接BM、BD,設(shè)BD∩AC=O,則O為BD的中點(diǎn).
所以BM∥OE.②
由①、②知,平面BFM∥平面AEC.
又BF平面BFM,所以BF∥平面AEC.
證法二:
因?yàn)? = = .
所以 、 、 共面.
又BF平面ABC,從而B(niǎo)F∥平面AEC.
【解析】(I)證明PA⊥AB,PA⊥AD,AB、AD是平面ABCD內(nèi)的兩條相交直線,即可證明PA⊥平面ABCD;(II)求以AC為棱,作EG∥PA交AD于G,作GH⊥AC于H,連接EH,說(shuō)明∠EHG即為二面角θ的平面角,解三角形求EAC與DAC為面的二面角θ的大;(Ⅲ)證法一F是棱PC的中點(diǎn),連接BM、BD,設(shè)BD∩AC=O,利用平面BFM∥平面AEC,證明使BF∥平面AEC.
證法二建立空間直角坐標(biāo)系,求出 、 、 共面,BF平面AEC,所以當(dāng)F是棱PC的中點(diǎn)時(shí),BF∥平面AEC.還可以通過(guò)向量表示,和轉(zhuǎn)化得到 、 、 是共面向量,BF平面ABC,從而B(niǎo)F∥平面AEC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在山頂點(diǎn)已測(cè)得,,的俯角分別為,,,其中,,為山腳兩側(cè)共線的三點(diǎn),現(xiàn)欲沿直線開(kāi)通穿山隧道,為了求出隧道的長(zhǎng),至少還需要直接測(cè)量出,,中的哪些線段長(zhǎng)?把你上一問(wèn)指出的需要測(cè)量得線段長(zhǎng)和已測(cè)得的角度作為已知量,寫(xiě)出計(jì)算隧道的步驟.
解:
步驟:還需要直接測(cè)量得線段為.
步驟:計(jì)算線段.
計(jì)算步驟:
步驟:計(jì)算線段
計(jì)算步驟:
步驟:計(jì)算線段
計(jì)算步驟:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出樣本的頻率分布表.
(2)畫(huà)出頻率分布直方圖.
(3)根據(jù)頻率分布表,估計(jì)數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法: ①分類變量A與B的隨機(jī)變量K2越大,說(shuō)明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次對(duì)人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù),并制作成如圖所示的人體脂肪含量與年齡關(guān)系的散點(diǎn)圖.根據(jù)該圖,下列結(jié)論中正確的是( )
A.人體脂肪含量與年齡正相關(guān),且脂肪含量的中位數(shù)等于20%
B.人體脂肪含量與年齡正相關(guān),且脂肪含量的中位數(shù)小于20%
C.人體脂肪含量與年齡負(fù)相關(guān),且脂肪含量的中位數(shù)等于20%
D.人體脂肪含量與年齡負(fù)相關(guān),且脂肪含量的中位數(shù)小于20%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)式過(guò)馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國(guó)式過(guò)馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
反感 | 10 | ||
不反感 | 8 | ||
合計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過(guò)馬路”的路人的概率是 .
(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程),并據(jù)此資料分析反感“中國(guó)式過(guò)馬路”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國(guó)式過(guò)馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
提示:可參考試卷第一頁(yè)的公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的是某池塘中的浮萍蔓延的面積與時(shí)間月)的關(guān)系有以下敘述:
①這個(gè)指數(shù)函數(shù)的底數(shù)是2;
②第5個(gè)月時(shí),浮萍的面積就會(huì)超過(guò)
③浮萍從蔓延到需要經(jīng)過(guò)1.5個(gè)月;
④浮萍每個(gè)月增加的面積都相等;
⑤若浮萍蔓延到所經(jīng)過(guò)的時(shí)間分別為則.其中正確的是
A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過(guò)點(diǎn)作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com