【題目】已知橢圓 的左焦點左頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知,是橢圓上的兩點,是橢圓上位于直線兩側(cè)的動點.若,試問直線的斜率是否為定值?請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次高中學(xué)科競賽中,4000名考生的參賽成績統(tǒng)計如圖所示,60分以下視為不及格,若同一組中數(shù)據(jù)用該組區(qū)間中點作代表,則下列說法中有誤的是( )
A. 成績在分的考生人數(shù)最多
B. 不及格的考生人數(shù)為1000人
C. 考生競賽成績的平均分約70.5分
D. 考生競賽成績的中位數(shù)為75分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線與圓相切,求的值;
(2)若函數(shù)在上存在極值,求的取值范圍;
(3)若函數(shù)有兩個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘭天購物廣場某營銷部門隨機抽查了100名市民在2018年國慶長假期間購物廣場的消費金額,所得數(shù)據(jù)如表,已知消費金額不超過3千元與超過3千元的人數(shù)比恰為.
消費金額(單位:千元) | 人數(shù) | 頻率 |
8 | 0.08 | |
12 | 0.12 | |
8 | 0.08 | |
7 | 0.07 | |
合計 | 100 | 1.00 |
(1)試確定,,,的值,并補全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費金額在、和的三個群體中抽取7人進(jìn)行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這7人中隨機選取2人,則此2人來自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇. 方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為 ,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (x>0,e為自然對數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù). (Ⅰ)當(dāng)a=2時,求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點為原點,焦點F與圓的圓心重合.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)定點,當(dāng)P點在C上何處時,的值最小,并求最小值及點P的坐標(biāo);
(3)若弦過焦點,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com