已知兩個(gè)正數(shù)a,b,可按規(guī)則c=ab+a+b擴(kuò)充為一個(gè)新數(shù)c,在a,b,c三個(gè)數(shù)中取兩個(gè)較大的數(shù),按上述規(guī)則擴(kuò)充得到一個(gè)新數(shù),依次下去,將每擴(kuò)充一次得到一個(gè)新數(shù)稱為一次操作.
(1)若a=1,b=3,按上述規(guī)則操作三次,則第三次擴(kuò)充所得的新數(shù)是
 
;
(2)若p>q>0,經(jīng)過6次操作后擴(kuò)充所得的數(shù)為(q+1)m(p+1)n-1(m,n為正整數(shù)),則m+n的值為
 
考點(diǎn):進(jìn)行簡(jiǎn)單的合情推理
專題:計(jì)算題,推理和證明
分析:(1)第一次:c=1×3+1+3=7,第二次:c=3×7+3+7=31,第三次:c=31×7+7+31=255;
(2)c=pq+q+q=(p+1)(q+1)-1,從而類比推導(dǎo)前6次.
解答: 解:(1)第一次:c=1×3+1+3=7,
第二次:c=3×7+3+7=31,
第三次:c=31×7+7+31=255;
(2)第一次:c=pq+q+q=(p+1)(q+1)-1,
第二次:c=[(p+1)(q+1)-1+1][p+1]-1
=(p+1)2(q+1)-1,
第三次:c=[(p+1)(q+1)-1+1][(p+1)2(q+1)-1+1]-1
=(p+1)3(q+1)2-1
第四次:c=(p+1)5(q+1)3-1,
第五次:c=(p+1)8(q+1)5-1,
第六次:c=(p+1)13(q+1)8-1,
故m+n=13+8=21.
故答案為:255,21.
點(diǎn)評(píng):本題考查了學(xué)生對(duì)新知識(shí)的接受能力及合情推理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(2
3
5
0+2-2-(2
1
4
 
1
2
+(
25
36
0.5+(
(-2)2

(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={3,5,6,8},B={4,5,7,8},則A∩B=( 。
A、{5,8}
B、{7,8}
C、{5,3}
D、{4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)P(
3
,1)
,且離心率為
6
3
,F(xiàn)為橢圓的右焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且 
MF
FN
(λ>0),定點(diǎn)A(-4,0).
(Ⅰ)求橢圓C的方程; 
(Ⅱ)當(dāng)λ=1時(shí),問:MN與AF是否垂直;并證明你的結(jié)論.
(Ⅲ)當(dāng)M、N兩點(diǎn)在C上運(yùn)動(dòng),且
AM
AN
tan∠MAN=6
3
時(shí),求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求
4sinα-2cosα
5cosα+3sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(4-
a
2
)x+4(x≤6)
ax-5(x>6)
,(a>0,a≠1).若數(shù)列{an}滿足an=f(n)且an+1>an,n∈N*,則實(shí)數(shù)a的取值范圍是(  )
A、(7,8)
B、[7,8)
C、(4,8)
D、(1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種商品的成本為5元/件,開始按8元/件銷售,銷售量為50件,為了獲得最大利潤(rùn),商家先后采取了提價(jià)與降價(jià)兩種措施進(jìn)行試銷.經(jīng)試銷發(fā)現(xiàn):日銷售量Q(件)與實(shí)際銷售價(jià)x(元)滿足關(guān)系:
Q=
50-10(x-8),8≤x<13
39(2x2-29x+107),(5<x<7)
198-6x
x-5
,(7≤x<8)

(1)求總利潤(rùn)(利潤(rùn)=銷售額-成本)y(元)與銷售價(jià)x(件)的函數(shù)關(guān)系式;
(2)試問:當(dāng)實(shí)際銷售價(jià)為多少元時(shí),總利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+4,(x<0)
3x,(x>0)
,則f{f(-2)}的值為(  )
A、8B、9C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+mx+n(m、n∈R)的兩個(gè)零點(diǎn)分別在(0,1)與(1,2)內(nèi),則(m+1)2+(n-2)2的取值范圍是( 。
A、[2,
5
]
B、(
2
5
)
C、[2,5]
D、(2,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案