【題目】設(shè)f(x)為定義在R上的奇函數(shù).如圖是函數(shù)圖象的一部分,當(dāng)0≤x≤2時(shí),是線(xiàn)段OA;當(dāng)x>2時(shí),圖象是頂點(diǎn)為P(3,4)的拋物線(xiàn)的一部分.

(1)在圖中的直角坐標(biāo)系中畫(huà)出函數(shù)f(x)的圖象;

(2)求函數(shù)f(x)在[2,+∞)上的解析式;

(3)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間.

【答案】(1)見(jiàn)解析;(2)f(x)=-2(x-3)2+4;(3)f(x)的單調(diào)遞減區(qū)間為(-∞,-3]和[3,+∞),單調(diào)遞增區(qū)間為[-3,3].

【解析】試題分析:

(1)利用奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng)可得圖象;

(2)y=f(x)的圖象時(shí)頂點(diǎn)在P(3,4),且過(guò)點(diǎn)A(2,2)的拋物線(xiàn)的一部分,利用拋物線(xiàn)的頂點(diǎn)式寫(xiě)出其解析式即可.

(3)由(1)中函數(shù)圖象可知函數(shù)的單調(diào)區(qū)間

試題解析:

(1)圖象如圖所示.

(2)當(dāng)x≥2時(shí),設(shè)f(x)=a(x-3)2+4(a≠0).

因?yàn)?/span>f(x)的圖象過(guò)點(diǎn)A(2,2),

所以f(2)=a(2-3)2+4=2所以a=-2.

所以f(x)=-2(x-3)2+4.

(3)由f(x)的圖象知,f(x)的單調(diào)遞減區(qū)間為(-∞,-3]和[3,+∞),單調(diào)遞增區(qū)間為[-3,3].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線(xiàn)性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程

3)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)(2)中所得的線(xiàn)性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是二次函數(shù),且滿(mǎn)足f(0)=1,f(x+1)-f(x)=2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD∠CDA90°,M是線(xiàn)段AE上的動(dòng)點(diǎn).

1)試確定點(diǎn)M的位置,使AC∥平面DMF,并說(shuō)明理由;

2)在(1)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)某種產(chǎn)品時(shí)的能耗y與產(chǎn)品件數(shù)x之間的關(guān)系式為y=ax+.且當(dāng)x=2時(shí),y=100;當(dāng)x=7時(shí),y=35.且此產(chǎn)品生產(chǎn)件數(shù)不超過(guò)20件.

(1)寫(xiě)出函數(shù)y關(guān)于x的解析式;

(2)用列表法表示此函數(shù),并畫(huà)出圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)生產(chǎn)的產(chǎn)品中抽取1000件測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到頻率分布直方圖如圖所示.

(Ⅰ)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

(Ⅱ)由頻率分布直方圖可以認(rèn)為這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,δ2),其中μ近似為樣本平均數(shù),δ2近似為樣本方差s2.

利用該正態(tài)分布,求P(175.6<Z<224.4);

②某用戶(hù)從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,估計(jì)其中質(zhì)量指標(biāo)值位于區(qū)間(175.6,224.4)的產(chǎn)品件數(shù).(精確到個(gè)位)

附: ≈12.2,若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,

P(μ-2δ<Z<μ+2δ)=0.9544

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓為參數(shù)), 上的動(dòng)點(diǎn),且滿(mǎn)足為坐標(biāo)原點(diǎn)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)的極坐標(biāo)為.

(1)求線(xiàn)段的中點(diǎn)的軌跡的普通方程;

(2)利用橢圓的極坐標(biāo)方程證明為定值,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用另一種方法表示下列集合.

(1){x||x|≤2,xZ};

(2){能被3整除,且小于10的正數(shù)}

(3)坐標(biāo)平面內(nèi)在第四象限的點(diǎn)組成的集合.

(4){(x,y)|xy6,xy均為正整數(shù)}

(5){3,-11,3,5}.

(6)3除余2的正整數(shù)集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案