7.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)(x∈R),為了得到函數(shù)g(x)=cos2x的圖象,只需將y=f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

分析 由條件利用誘導(dǎo)公式,y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)f(x)=sin(2x+$\frac{π}{6}$)=cos(2x+$\frac{π}{6}$-$\frac{π}{2}$)=cos(2x-$\frac{π}{3}$)的圖象,
向左平移$\frac{π}{6}$個單位,可得到函數(shù)g(x)=cos[2(x+$\frac{π}{6}$)-$\frac{π}{3}$]=cos2x的圖象,
故選:A.

點評 本題主要考查誘導(dǎo)公式,y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的前n項和為Sn=4(a1+a3+…+a2n-1),a1a2a3=27,則a6=(  )
A.27B.81C.243D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個玻璃瓶中裝有大小相等質(zhì)地均勻顏色各不相同的玻璃小球共3個,現(xiàn)隨機(jī)的倒出小球(至少倒出一個),倒后重新將倒出小球裝回原瓶中,進(jìn)行下一次操作.現(xiàn)通過倒玻璃球走跳棋游戲,規(guī)則如下:棋盤上標(biāo)有第0站,第1站,第2站…一枚棋子開始停在第0站,棋手將玻璃瓶中的小球倒出,若倒出的小球是奇數(shù)個,將棋子向前走一步;若倒出的小球是偶數(shù)個,則將棋子向前走兩步.然后將倒出的小球裝回原玻璃瓶,準(zhǔn)備下一次操作.設(shè)棋子跳到第n站(n∈N*)的概率為Pn,已知P0=1.
(1)求倒出的小球是奇數(shù)個的概率;
(2)求P1、P2;
(3)證明:數(shù)列$\{{P_n}-{P_{n-1}}\},n∈{N^*}$是等比數(shù)列,并求Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)的定義域為[-3,3],則f(x2-1)的定義域為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知AB是圓C:(x+2)2+(y-l)2=$\frac{2}{5}$的一條直徑,若楠圓x2+4y2=4b2(b∈R)經(jīng)過 A、B 兩點,則該橢圓的方程是$\frac{{x}^{2}}{\frac{216}{25}}+\frac{{y}^{2}}{\frac{54}{25}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的首項a1=2,且對于任意的n∈N*都有3an+1=2an+1,則an=1+$(\frac{2}{3})^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知某商場新進(jìn)3000袋奶粉,為檢查其三聚氰胺是否超標(biāo),現(xiàn)采用系統(tǒng)抽樣的方法從中抽取200袋檢查,若第一組抽出的號碼是7,則第四十一組抽出的號碼為607.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域為[m,n],若存在k∈N*,使得函數(shù)f(x)的值域為[km,kn],則稱函數(shù)f(x)為“k-倍乘函數(shù)”.
(1)請判斷函數(shù)f(x)=2x,x∈[1,2]是否是“2-倍乘函數(shù)”;
(2)已知函數(shù)g(x)=x2,問是否存在k∈N*,使g(x)在[2,4]上為“k-倍乘函數(shù)”;
(3)已知函數(shù)h(x)=-x2+4在區(qū)間[m,n]上為“2-倍乘函數(shù)”,求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知1>a>b>c>0,且a,b,c依次成等比數(shù)列,設(shè)m=logab,n=logbc,p=logca,則m、n、p的大小關(guān)系為( 。
A.p>n>mB.m>p>nC.p>m>nD.m>n>p

查看答案和解析>>

同步練習(xí)冊答案