已知直線x+2y+m=0(m∈R)與拋物線C:y2=x相交與不同的兩點(diǎn)A,B.
(1)求實(shí)數(shù)m的取值范圍;
(2)在拋物線C上是否存在一點(diǎn)P,對(duì)(1)中任意m的值,都有直線PA與PB的傾斜角互補(bǔ)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
【答案】分析:(1)聯(lián)立直線x+2y+m=0(m∈R)和拋物線C:y2=x,并整理得y2+2y+m=0,由判別式△=4-4m>0,知實(shí)數(shù)m的取值范圍{m|m<1}.
(2)設(shè)A(x1,y1),B(x2,y2),P(x,y) 由題意知,,,由此可知存在P(1,1),使得對(duì)(1)中任意的m的值,都有直線PA與PB的斜率互為相反數(shù).
解答:解:(1)聯(lián)立直線x+2y+m=0(m∈R)和拋物線C:y2=x,并整理得y2+2y+m=0,
∵直線x+2y+m=0(m∈R)與拋物線C:y2=x相交于不同的兩點(diǎn)A,B.
∴判別式△=4-4m>0,∴m<1,即實(shí)數(shù)m的取值范圍{m|m<1}.
(2)設(shè)A(x1,y1),B(x2,y2),P(x,y


,
∴y12=x1,y22=x2,y2=x
,∴-2y=y1+y2
由(1)得:y=1
y=x=1
所以存在P(1,1),使得對(duì)(1)中任意的m的值,都有直線PA與PB的斜率互為相反數(shù).
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+2y+m=0(m∈R)與拋物線C:y2=x相交于不同的兩點(diǎn)A,B.
(1)求實(shí)數(shù)m的取值范圍;
(2)在拋物線C上是否存在一點(diǎn)P,對(duì)(1)中任意m的值,都有直線PA與PB的傾斜角互補(bǔ)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+2y+m=0(m∈R)與拋物線C:y2=x相交于不同的兩點(diǎn)A,B,

(1)求實(shí)數(shù)m的取值范圍;

(2)在拋物線C上是否存在一個(gè)定點(diǎn)P,對(duì)(1)中任意的m的值,都有直線PA與PB互為相反數(shù)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-2y+m=0與曲線x2+y2+2x-4y=0相交于E、F兩點(diǎn),如果|EF|的值最大,那么m的值是

A.5                    B.-5               C.4                D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-2y+m=O與曲線x2+y2+2x-4y=0相交于E、F兩點(diǎn),如果|EF|的值最大,那么m的值是(    )

A.5              B.-5            C.4                D.-4

查看答案和解析>>

同步練習(xí)冊(cè)答案