【題目】(本小題滿分12分)設函數(shù).

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)當函數(shù)有最大值且最大值大于時,求的取值范圍.

【答案】(1) 當時,函數(shù)上單調遞增,

時,函數(shù) 上單調遞增,在 上單調遞減;

(2)

【解析】試題分析:(1)求導出現(xiàn)分式通分,討論分子的正負;(2)研究函數(shù)的單調性,猜出函數(shù)的根比較a和函數(shù)零點的關系即可;

(Ⅰ)函數(shù) 的定義域為 ,

①當 時, ,函數(shù)上單調遞增;

②當時,令,解得

i)當時, ,函數(shù)單調遞增,

ii)當時, ,函數(shù)單調遞減;

綜上所述:當時,函數(shù)上單調遞增,

時,函數(shù) 上單調遞增,在上單調遞減;

(Ⅱ)由(Ⅰ)得:

當函數(shù)有最大值且最大值大于, ,

,

上單調遞增,

上恒成立,

的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+m21x
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是單調遞增函數(shù),求實數(shù)m的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)的圖象關于點A(a,0)對稱,若存在,求實數(shù)a的值,若不存在,請說明理由.
注:點M(x1 , y1),N(x2 , y2)的中點坐標為( , ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)g(x)=log2 (x>0),關于方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數(shù)解,則實數(shù)m的取值范圍為(
A.(﹣∞,4﹣2 )∪(4 ,+∞)
B.(4﹣2 ,4
C.(﹣ ,﹣
D.(﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】請閱讀下列材料:若兩個正實數(shù)a1 , a2滿足a12+a22=1,那么a1+a2 .
證明:構造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數(shù)x , 恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2 .
根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你能得到的結論為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的一次數(shù)學競賽中,全體參賽學生的競賽成績X近似服從正態(tài)分布N(70,100).已知成績在90分以上(含90分)的學生有16名.

(1)試問此次參賽的學生總數(shù)約為多少人?

(2)若該校計劃獎勵競賽成績在80分以上(含80分)的學生,試問此次競賽獲獎勵的學生約為多少人?

附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個函數(shù)的是(
A.f(x)=2x+1與g(x)=
B.y=x﹣1與y=
C.y= 與y=x+3
D.f(x)=1與g(x)=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 平面, , , .

1)證明;

2)求二面角的余弦值;

3)設點為線段上一點,且直線平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三棱錐V﹣ABC的底面邊長為2,E,F(xiàn),G,H分別是VA,VB,BC,AC的中點,則四邊形EFGH的面積的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x2+1.

(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實數(shù)ab的值;

(Ⅱ)討論函數(shù)f(x)的單調性;

查看答案和解析>>

同步練習冊答案