3.若一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{16}{3}$C.8D.$\frac{128}{3}$

分析 由已知中的三視圖可得:該幾何體是一個正方體內(nèi)挖去一個同底等高的四棱錐,進而得到答案.

解答 解:由已知中的三視圖可得:
該幾何體是一個正方體內(nèi)挖去一個同底等高的四棱錐,
故體積V=(1-$\frac{1}{3}$)×4×4×4=$\frac{128}{3}$,
故選:D

點評 本題考查的知識點是棱柱的體積和表面積,棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知θ是第三象限角,滿足|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,則$\frac{θ}{2}$是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解關(guān)于x的不等式$\frac{a(x-1)}{x-2}$>2(其中a≤1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知底面半徑為r,高為4r的圓柱的側(cè)面積等于半徑為R的球的表面積,則$\frac{R}{r}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)$\frac{1-i}{2i+1}$(i為虛數(shù)單位)的模等于(  )
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.2D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知各項均不相等的等差數(shù)列{an}的前五項和S5=20,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在正方體ABCD-A1B1C1D1中,與AB異面且垂直的棱共有4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=sinωx+cosωx(ω>0),在曲線y=f(x)與直線y=1的交點中,若相鄰交點距離的最小值為$\frac{π}{4}$,則f(x)的最小正周期為(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)A,B是非空的集合,如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個元素x,在集合中B都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個映射,設(shè)f:x→$\sqrt{x}$是從集合A到集合B的一個映射.①若A={0,1,2},則A∩B={0,1};②若B={1,2},則A∩B={1}或∅.

查看答案和解析>>

同步練習冊答案