已知角α的終邊經(jīng)過點(diǎn)P0(-3,-4),則cosα的值為( 。
A、-
4
5
B、
3
5
C、
4
5
D、-
3
5
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:根據(jù)角α的終邊經(jīng)過點(diǎn)P0(-3,-4),利用任意角的三角函數(shù)定義求出cosα的值.
解答: 解:∵角α的終邊經(jīng)過點(diǎn)P0(-3,-4),
∴cosα=
-3
(-3)2+(-4)2
=-
3
5

故選:D.
點(diǎn)評:此題考查了運(yùn)用誘導(dǎo)公式化簡求值,以及任意角的三角函數(shù)定義,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=sin(x+φ)+cos(x+Φ),則存在實(shí)數(shù)φ和Φ使得f(x):
①是奇函數(shù)而非偶函數(shù);
②是偶函數(shù)而非奇函數(shù);
③既是奇函數(shù)又是偶函數(shù);
④既不是奇函數(shù)又不是偶函數(shù);
以上判斷中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列推理正確的是(  )
A、如果不買彩票,那么就不能中獎(jiǎng).因?yàn)槟阗I了彩票,所以你一定中獎(jiǎng)
B、因?yàn)閍>b,a>c,所以a-b>a-c
C、若a>0,b>0,則lga+lgb≥2
lga•lgb
D、若a>0,b<0,則
a
b
+
b
a
=-(
-a
b
+
-b
a
)≤-2
(
-a
b
)•(
-b
a
)
=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log 
1
2
(x2-2x)的單調(diào)遞增區(qū)間是( 。
A、(1,+∞)
B、(2,+∞)
C、(-∞,0)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲兩顆骰子,第一顆骰子向上的點(diǎn)數(shù)為x,第二顆骰子向上的點(diǎn)數(shù)為y,則“|x-y|>1”的概率為(  )
A、
5
9
B、
4
9
C、
1
6
D、
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)對于定義域內(nèi)任意x1,x2(x1≠x2)都有(x1-x2)[f(x1)-f(x2)]>0成立,且函數(shù)f(x)對于任意的x都有f(x)=-f(2-x)恒成立,如果實(shí)數(shù)m,n滿足條件f(m2-6m+23)+f(n2-8n)<0且m>3,那么m2+n2的取值范圍是( 。
A、(13,49)
B、(13,45)
C、(9,25)
D、(9,49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)歸納法的遞推性證明中由假設(shè)n=k時(shí)成立推導(dǎo)n=k+1時(shí)成立時(shí)f(n)=1+
1
2
+
1
3
+…+
1
2n-1
增加的項(xiàng)數(shù)是( 。
A、1
B、2k+1
C、2k-1
D、2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=xlnx,則這個(gè)函數(shù)在點(diǎn)(1,0)處的切線方程是( 。
A、y=2x-2
B、y=2x+2
C、y=x-1
D、y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的多面體中,四邊形ABCD為正方形,四邊形ADPQ是直角梯形,AD⊥DP,CD⊥平面PDAQ,AB=AQ=
1
2
DP.
(1)求證:棱錐Q-ABCCD與棱錐P-DCQ的體積相等.
(2)求異面直線CP與BQ所成角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

同步練習(xí)冊答案