已知等差數(shù)列{an}前三項的和為-3,前三項的積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.
(I)設(shè)等差數(shù)列的公差為d,則a2=a1+d,a3=a1+2d
由題意可得,
3a1+3d=-3
a1(a1+d)(a1+2d)=8

解得
a1=2
d=-3
a1=-4
d=3

由等差數(shù)列的通項公式可得,an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7
(II)當an=-3n+5時,a2,a3,a1分別為-1,-4,2不成等比
當an=3n-7時,a2,a3,a1分別為-1,2,-4成等比數(shù)列,滿足條件
故|an|=|3n-7|=
-3n+7,n=1,2
3n-7,n≥3

設(shè)數(shù)列{|an|}的前n項和為Sn
當n=1時,S1=4,當n=2時,S2=5
當n≥3時,Sn=|a1|+|a2|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)
=5+
(n-2)[2+(3n-7)]
2
=
3n2-11n+20
2
,當n=2時,滿足此式
綜上可得Sn=
4,n=1
3n2-11n+20
2
,n≥2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和是sn=-
3
2
n2+
205
2
n
,
(1)求數(shù)列的通項公式an;
(2)求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標原點,其導函數(shù)為f′(x)=6x-2,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在等比數(shù)列{an}中,Sn為{an}的前n項和,且S3=
7
2
,S6=
63
2
,
(1)求an
(2)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列{an}滿足:a10=1,S20=0.
(1)求數(shù)列{|an|}的前20項的和;
(2)若數(shù)列{bn}滿足:log2bn=an+10,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列前三項為a,4,3a,前n項的和為sn,sk=2550.
(1)求a及k的值;
(2)求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等差數(shù)列{an}中,a1=3,公差d=2,Sn為前n項和,求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}滿足Sn=n2an(n∈N*),其中Sn是{an}的前n項和,且a1=1,求
(1)求an的表達式;
(2)求Sn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列2,5,11,20,x,47, 合情推出x的值為(   )
A.29B.31 C.32D.33

查看答案和解析>>

同步練習冊答案