f(x)=,e<a<b,則                                           (  )

A.f(a)>f(b)                       B.f(a)=f(b)

C.f(a)<f(b)                       D.f(a)f(b)>1

A

解析 f′(x)=,當(dāng)x>e時,f′(x)<0,

f(x)在(e,+∞)上為減函數(shù),f(a)>f(b),故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(福建卷) 題型:013

對于具有相同定義域D的函數(shù)f(x)和g(x),若存在函數(shù)h(x)=kxb(k,b為常數(shù)),對任給的正數(shù)m,存在相應(yīng)的x0D,使得當(dāng)x∈Dxx0時,總有則稱直線l:ykxb為曲線yf(x)與yg(x)的“分漸近線”.給出定義域均為D={x|x>1}的四組函數(shù)如下:

f(x)=x2,g(x)=

f(x)=10-x+2,g(x)=

③f(x)=,g(x)=

④f(x)=,g(x)=2(x-1-e-x)

其中,曲線yf(x)與yg(x)存在“分漸近線”的是

[  ]
A.

①④

B.

②③

C.

②④

D.

③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山西省忻州一中2010屆高三第三次四校聯(lián)考數(shù)學(xué)理科試題 題型:044

設(shè)函數(shù)h(x)=x2,(x)=2elnx(e為自然對數(shù)的底).

(1)求函數(shù)F(x)=h(x)-x的極值;

(2)若存在常數(shù)k和b,使得函數(shù)f(x)和g(x)對其定義域內(nèi)的任意實(shí)數(shù)x分別滿足f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為函數(shù)f(x)和g(x)的“隔離直線”.試問:函數(shù)h(x)和(x)是否存在“隔離直線”?若存在,求出“隔離直線”方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省南昌一中、南昌十中2011屆高三第一次聯(lián)考理科數(shù)學(xué)試題 題型:044

已知函數(shù)f(x)=g(x)=clnx+b,且x=是函數(shù)y=f(x)的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)a的值;

(Ⅱ)若方程f(x)-m=0有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

(Ⅲ)若直線l是函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線,且直線l與函數(shù)y=g(x)的圖象相切于點(diǎn)P(x0,y0),x0∈[e-1,e],求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省重點(diǎn)中學(xué)協(xié)作體2012屆高三第一次聯(lián)考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x

(Ⅰ)求函數(shù)g(x)在區(qū)間(0,e]上的值域;

(Ⅱ)是否存在實(shí)數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由;

(Ⅲ)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,my2),如果對于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中總能使得F(x1)-f(x2)=(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市重慶一中2012屆高三9月月考數(shù)學(xué)理科試題 題型:044

若存在實(shí)數(shù)k和b,使得函數(shù)f(x)與g(x)對其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)與g(x)的“和諧直線”.已知h(x)=x2(x)=2elnx,(e為自然對數(shù)的底數(shù));

(1)F(x)=h(x)-(x)的極值

(2)函數(shù)h(x)和(x)是否存在和諧直線?若存在,求出此和諧直線方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案