8.已知f(x)=lg($\sqrt{{x}^{2}+1}$-ax)是一個奇函數(shù),則實數(shù)a的值是(  )
A.1B.-1C.±1D.10

分析 由題意,f(-x)+f(x)=0,可得lg($\sqrt{{x}^{2}+1}$+ax)+lg($\sqrt{{x}^{2}+1}$-ax)=0,利用對數(shù)的運(yùn)算法則可得結(jié)論.

解答 解:由題意,f(-x)+f(x)=0,可得lg($\sqrt{{x}^{2}+1}$+ax)+lg($\sqrt{{x}^{2}+1}$-ax)=0,
∴l(xiāng)g(x2+1-a2x2)=0,
∴x2+1-a2x2=1,
∴a=±1.
故選C.

點(diǎn)評 本題考查計算的性質(zhì),考查對數(shù)的運(yùn)算法則,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.F1(-4,0)、F2(4,0)為兩個定點(diǎn),P為動點(diǎn),若|PF1|+|PF2|=8,則動點(diǎn)P的軌跡為( 。
A.橢圓B.直線C.射線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個樹形圖:

易知第三行有白圈5個,黑圈4個.我們采用“坐標(biāo)”來表示各行中的白圈、黑圈的個數(shù).比如第一行記為(1,0),第二行記為(2,1),第三行記為(5,4).照此規(guī)律,第n行中的白圈、黑圈的“坐標(biāo)”為(xn,yn),則$\underset{lim}{n→∞}$$\frac{{x}_{n}}{{y}_{n}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(3x)=4xlog23+10,則f(2)+f(4)+f(8)+…+f(210)的值等于320.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若$\frac{π}{2}$<α<π,且sinα+cosα=$\frac{{\sqrt{10}}}{5}$,則tanα的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.運(yùn)用三段論推理:復(fù)數(shù)不可以比較大。ù笄疤幔,2015和2016都是復(fù)數(shù)(小前提),2015和2016不能比較大。ńY(jié)論).以上推理(  )
A.結(jié)論正確B.小前提錯誤C.推理形式錯誤D.大前提錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等比數(shù)列{an}的公比q為正數(shù),且a3•a7=4a42,則q=( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)A(-1,2)和點(diǎn)B(4,-6)在直線2x-ky+4=0的兩側(cè),則實數(shù)k的取值范圍是(  )
A.(-2,1)B.(-1,2)C.(-∞,1)∪(-2,+∞)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.化簡與求值:
(1)$\frac{{\root{3}{{x\;{y^2}}}}}{{\root{6}{{{x^5}\;}}•\;\root{4}{y^3}}}$(x>0,y>0)
(2)${log_2}{2^5}+{log_2}6-{log_2}3$.

查看答案和解析>>

同步練習(xí)冊答案