已知點(diǎn)A、B的坐標(biāo)分別是,.直線相交于點(diǎn)M,且它們的斜率之積為-2.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡方程;
(Ⅱ)若過(guò)點(diǎn)的直線交動(dòng)點(diǎn)M的軌跡于C、D兩點(diǎn), 且N為線段CD的中點(diǎn),求直線的方程.
⑵直線的方程為
(Ⅰ)設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120113672488.gif" style="vertical-align:middle;" />,所以 
化簡(jiǎn)得: 
(Ⅱ) 設(shè) 當(dāng)直線x軸時(shí),直線的方程為,則,其中點(diǎn)不是N,不合題意。
設(shè)直線的方程為 。
代入
…………(1)  …………(2)
(1)-(2)整理得: 
直線的方程為
即所求直線的方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓內(nèi)的一點(diǎn),是橢圓的右焦點(diǎn),在橢圓上求一點(diǎn),使之值最小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率,過(guò)橢圓的右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線L與橢圓相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ。試探究點(diǎn)O到直線L的距離是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,右準(zhǔn)線與軸交于點(diǎn),若橢圓的離心率
(1)求的值
(2)若過(guò)的直線與橢圓交于兩點(diǎn),且共線(為坐標(biāo)原點(diǎn))求的夾角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn)F1(0,-3)、F2(0,3),動(dòng)點(diǎn)P滿足條件,則點(diǎn)P的軌跡是(   )。
A.橢圓B.線段C.橢圓或線段D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)為,點(diǎn)P為其上的動(dòng)點(diǎn),當(dāng)為鈍角時(shí),點(diǎn)P橫坐標(biāo)的取值范圍是_________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn)M1(0,-3),M2(0,3),動(dòng)點(diǎn)P滿足條件|PM1|+|PM2|=a+
9
a
(其中a是正常數(shù)),則點(diǎn)P的軌跡是( 。
A.橢圓B.線段C.橢圓或線段D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(Ⅰ)求經(jīng)過(guò)點(diǎn)(-
3
2
,
5
2
),且與橢圓9x2+5y2=45有共同焦點(diǎn)的橢圓方程;
(Ⅱ)已知橢圓以坐標(biāo)軸為對(duì)稱軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是橢圓上的一個(gè)點(diǎn),是橢圓的焦點(diǎn),如果點(diǎn)到點(diǎn)的距離是,那么點(diǎn)到點(diǎn)的距離是            

查看答案和解析>>

同步練習(xí)冊(cè)答案