【題目】根據(jù)某鎮(zhèn)家庭抽樣調(diào)查的統(tǒng)計(jì),2003年每戶家庭平均消費(fèi)支出總額為1萬元,其中食品消費(fèi)額為0.6萬元.預(yù)測2003年后,每戶家庭平均消費(fèi)支出總額每年增加3000元,如果到2005年該鎮(zhèn)居民生活狀況能達(dá)到小康水平(即恩格爾系數(shù)n滿足),則這個鎮(zhèn)每戶食品消費(fèi)額平均每年的增長率至多是多少(精確到0.1%)?

【答案】15.5%.

【解析】

設(shè)食品消費(fèi)額的年平均增長率為,根據(jù)題意可由恩格爾系數(shù)n滿足的關(guān)于的不等式租,解不等式組即可求得的范圍,進(jìn)而求得平均每年的增長率至多量.

設(shè)食品消費(fèi)額的年平均增長率為,

2005,食品消費(fèi)額為萬元,消費(fèi)支出總額為(萬元).

依題意得

解得

因此

因?yàn)?/span>,,

所以該鎮(zhèn)居民的生活如果在2005年達(dá)到小康水平,那么他們的食品消費(fèi)額的年增長率就應(yīng)在3.3%15.5%的范圍內(nèi)取值,不包括3.3%但包括15.5%,也就是說,平均每年的食品消費(fèi)額至多是15.5%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn)是半徑為的砂輪邊緣上的一個質(zhì)點(diǎn),它從初始位置,)開始,按逆時針方向每旋轉(zhuǎn)一周,

1)求點(diǎn)的縱坐標(biāo)關(guān)于時間的函數(shù)關(guān)系;

2)求點(diǎn)的運(yùn)動周期和頻率;

3)函數(shù)的圖像可由余弦曲線經(jīng)過怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,直線交圓兩點(diǎn),過點(diǎn)的平行線交于點(diǎn).

1)證明為定值,并寫出點(diǎn)的軌跡方程;

2)設(shè)點(diǎn)的軌跡為曲線,直線,兩點(diǎn),過點(diǎn)且與直線垂直的直線與圓交于,兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列不等式的解集:

(1);

(2);

(3);

(4);

(5);

(6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列4個正方體中,點(diǎn),,,,分別為正方體的頂點(diǎn)或所在棱的中點(diǎn),則在這4個正方體中,滿足直線平面的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分。設(shè)在甲、乙的比賽中,每次發(fā)球,甲發(fā)球得1分的概率為,乙發(fā)球得1分的概率為,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立,甲、乙的一局比賽中,甲先發(fā)球.則開始第4次發(fā)球時,甲、乙的比分為1比2的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)區(qū)間;

如果對于任意的,總成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實(shí)數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分) 已知P3,2),一直線過點(diǎn)P,

若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;

若直線x、y軸正半軸交于AB兩點(diǎn),當(dāng)面積為12時求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案