【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應(yīng)數(shù)據(jù):
外賣份數(shù)(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)外賣份數(shù)為12份時(shí),收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式, ;
②參考數(shù)據(jù): , , .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,a1=1,且a2+2,a3 , a4﹣2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn= ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,AB⊥BC側(cè)面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.
(1)若PB中點(diǎn)為E.求證:AE∥平面PCD;
(2)若∠PAB=60°,求直線BD與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
① “若,則有實(shí)根”的逆否命題為真命題;
②命題“”為真命題的一個(gè)充分不必要條件是;
③命題“,使得”的否定是真命題;
④命題函數(shù)為偶函數(shù),命題函數(shù)在上為增函數(shù),
則為真命題.
其中,正確的命題是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6 .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|10+2log3an|,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4
B.一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的平方
C.數(shù)據(jù)3,5,7,9的標(biāo)準(zhǔn)差是數(shù)據(jù)6、10、14、18的標(biāo)準(zhǔn)差的一半
D.頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域?yàn)锳.
(1)求A;
(2)已知k>0,集合B={x| },且A∩B≠,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱中,已知側(cè)面, , , .
(1)求證: 平面;
(2)是棱上的一點(diǎn),若二面角的正弦值為,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com