A. | (-$\frac{1}{2}$,$\frac{1}{2}$) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) |
分析 設F(x)=f(x)-$\frac{1}{2}$x,根據題意可得函數(shù)F(x)在R上單調遞減,然后根據f(x2)<$\frac{{x}^{2}}{2}$+$\frac{1}{2}$可得f(x2)-$\frac{{x}^{2}}{2}$<f(1)-$\frac{1}{2}$,最后根據單調性可求出x的取值范圍.
解答 解:設F(x)=f(x)-$\frac{1}{2}$x,則F′(x)=f′(x)-$\frac{1}{2}$,
∵f′(x)<$\frac{1}{2}$,∴F′(x)=f′(x)-$\frac{1}{2}$<0,
即函數(shù)F(x)在R上單調遞減
而f(x2)<$\frac{{x}^{2}}{2}$+$\frac{1}{2}$,
即f(x2)-$\frac{{x}^{2}}{2}$<f(1)-$\frac{1}{2}$,
∴F(x2)<F(1)而函數(shù)F(x)在R上單調遞減,
∴x2>1即x∈(-∞,-1)∪(1,+∞),
故選:B.
點評 本題主要考查了導數(shù)的運算,以及利用單調性解不等式和構造法的應用,同時考查了運算求解的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2 | B. | y=x2-2x | C. | y=sinx | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,1) | B. | ($\frac{3}{2}$,$\frac{9}{4}$) | C. | ($\frac{2}{3}$,$\frac{4}{9}$) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1+i | B. | -1-i | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-1≤x<3} | B. | {x|0<x≤1} | C. | {x|1≤x<3} | D. | {x|0≤x≤3} |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com