觀察給出的下列各式:
(1)tan10°•tan20°+tan20°•tan60°+tan60°•tan10°=1;
(2)tan5°•tan15°+tan15°•tan70°+tan70°•tan5°=1.
由以上兩式成立,你能得到一個(gè)什么樣的推廣?證明你的結(jié)論.
考點(diǎn):歸納推理
專題:綜合題,推理和證明
分析:可以觀察到:10°+20°+60°=90°,5°+15°+70°=90°,故可以猜想此推廣式為:若α+β+γ=
π
2
,且α,β,γ都不等于kπ+
π
2
(k∈Z)
,則有tanα•tanβ+tanβ•tanγ+tanγ•tanα=1.利用和角的正切公式,即可得出結(jié)論.
解答: 解:可以觀察到:10°+20°+60°=90°,5°+15°+70°=90°,
故可以猜想此推廣式為:若α+β+γ=
π
2
,且α,β,γ都不等于kπ+
π
2
(k∈Z)
,
則有tanα•tanβ+tanβ•tanγ+tanγ•tanα=1.                
證明:∵α+β+γ=
π
2
,∴α+β=
π
2
-γ,
∴tan(α+β)=tan(
π
2
-γ)=cotγ,
∴tanα+tanβ=cotγ(1-tanαtanβ),
∴tanα•tanβ+tanβ•tanγ+tanγ•tanα=1.
點(diǎn)評(píng):合情推理中的類比推理是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)類比遷移到另一類數(shù)學(xué)對(duì)象上去.其思維過(guò)程大致是:觀察、比較 聯(lián)想、類推 猜測(cè)新的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二階矩陣M滿足M
1
0
=
2
0
,M
1
1
=
-2
-2
,求M4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=x2-4x+5,若存在一個(gè)實(shí)數(shù)x,使a>f(x)成立,則a取值范圍是( 。
A、a>-4B、a≤4
C、a>1D、a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)球的外切正方體的全面積等于24cm2,則此球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元).確定x=
 
,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=2-x+lnx,下列說(shuō)法正確的是( 。
A、無(wú)零點(diǎn)
B、有且僅有一個(gè)零點(diǎn)
C、有兩個(gè)零點(diǎn)x1,x2,且(x1-1)(x2-1)>0
D、有兩個(gè)零點(diǎn)x1,x2,且(x1-1)(x2-1)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:ρ=4sinθ與直線
x=3t
y=2-4t
(t為參數(shù))交于A,B兩點(diǎn),則|AB|=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
為單位向量,且?jiàn)A角為
3
,則向量2
a
+
b
a
的夾角大小是( 。
A、
3
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果圓(x-a)2+(y-a)2=8上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為
2
,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案