2.已知命題p:?x0∈R,x02+2x0+2≤0,則命題p的否定?p是( 。
A.?p:?x0∈R,x02+2x0+2>0B.¬p:?x∈R,x2+2x+2>0
C.?p:?x0∈R,x02+2x0+2≥0D.?p:?x∈R,x2+2x+2≥0

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,所以命題p:“?x0∈R,x02+2x0+2≤0”,
則命題p的否定¬p是:?x∈R,x2+2x+2>0.
故選:B

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求值:
(1)sin75°;
(2)sin195°;
(3)sin72°cos42°-cos72°sin42°;
(4)cos20°cos70°-sin20°sin70°;
(5)cos79°cos56°-cos11°cos34°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.由經(jīng)驗(yàn)得知,在某大商場(chǎng)付款處排隊(duì)等候付款的人數(shù)及其概率如表:
排隊(duì)人數(shù)5人及以下678910人及以上
概率0.10.160.30.30.10.04
(1)不多于6個(gè)人排隊(duì)的概率;
(2)至少8個(gè)人排隊(duì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在四棱錐P-ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F(xiàn)分別為PC,BD的中點(diǎn).
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,$\frac{1}{9}$),則f(4)=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知正項(xiàng)等比數(shù)列{an}滿足a7=a6+2a5,若存在兩項(xiàng)am,an,使得$\sqrt{{a_m}{a_n}}=4{a_1}$,則$\frac{1}{m}+\frac{4}{n}$的最小值為( 。
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知A、B、C為三角形ABC的三內(nèi)角,其對(duì)應(yīng)邊分別為a、b、c,且2acosC=2b-c.
(1)求A的大;
(2)若$a=\sqrt{7},b+c=5$,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.?dāng)?shù)列1,3,6,10,…的通項(xiàng)公式是( 。
A.${a_n}={n^2}-({n-1})$B.${a_n}={n^2}-1$C.${a_n}=\frac{{n({n+1})}}{2}$D.${a_n}={n^2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年份2007200820092010201120122013
年份代號(hào)t1234567
人均純收入y2.93.33.64.4a5.25.9
y關(guān)于t的線性回歸方程為$\widehaty=0.5t+2.3$,則a的值為4.8.

查看答案和解析>>

同步練習(xí)冊(cè)答案