若斜率為的直線l與橢圓+=1(a>b>0)有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)在x軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為_(kāi)_______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1) 求橢圓C的方程;
(2) 點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
給定橢圓C:+=1(a>b>0),稱圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為.
(1) 求橢圓C和其“準(zhǔn)圓”的方程;
(2) 若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B、D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求·的取值范圍;
(3) 在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E滿足,雙曲線過(guò)C、D、E三點(diǎn),且以A、B為焦點(diǎn).當(dāng)≤λ≤時(shí),求雙曲線離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上,若其離心率為,焦距為8,則該橢圓的方程是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com