5.國(guó)內(nèi)某知名大學(xué)有男生14000人,女生10000人.該校體育學(xué)院想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取120人,統(tǒng)計(jì)他們平均每天運(yùn)動(dòng)的時(shí)間,如表:(平均每天運(yùn)動(dòng)的時(shí)間單位:小時(shí),該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3])
男生平均每天運(yùn)動(dòng)的時(shí)間分布情況:
平均每天運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)212231810x
女生平均每天運(yùn)動(dòng)的時(shí)間分布情況:
平均每天運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)51218103y
(Ⅰ)請(qǐng)根據(jù)樣本估算該校男生平均每天運(yùn)動(dòng)的時(shí)間(結(jié)果精確到0.1);
(Ⅱ)若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.
①請(qǐng)根據(jù)樣本估算該校“運(yùn)動(dòng)達(dá)人”的數(shù)量;
②請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“是否為‘運(yùn)動(dòng)達(dá)人’與性別有關(guān)?”
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人總  計(jì)
男  生
女  生
總  計(jì)
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

分析 (Ⅰ)由分層抽樣求出男生抽取的人數(shù),女生抽取人數(shù),然后求解該校男生平均每天運(yùn)動(dòng)的時(shí)間.
(Ⅱ)①樣本中“運(yùn)動(dòng)達(dá)人”所占比例是$\frac{20}{120}=\frac{1}{6}$,故估計(jì)該!斑\(yùn)動(dòng)達(dá)人”人數(shù);②填寫(xiě)表格,求解K2的觀測(cè)值,推出在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,‘運(yùn)動(dòng)達(dá)人’與性別有關(guān)”的結(jié)果.

解答 解:(Ⅰ)由分層抽樣得:男生抽取的人數(shù)為$120×\frac{14000}{14000+10000}=70$人,女生抽取人數(shù)為120-70=50人,故x=5,y=2,(2分)
則該校男生平均每天運(yùn)動(dòng)的時(shí)間為:$\frac{0.25×2+0.75×12+1.25×23+1.75×18+2.25×10+2.75×5}{70}≈1.5$,(5分)
故該校男生平均每天運(yùn)動(dòng)的時(shí)間約為1.5小時(shí);
(Ⅱ)①樣本中“運(yùn)動(dòng)達(dá)人”所占比例是$\frac{20}{120}=\frac{1}{6}$,故估計(jì)該校“運(yùn)動(dòng)達(dá)人”有$\frac{1}{6}×({14000+10000})=4000$人;                                (8分)
②由表格可知:

運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人總  計(jì)
男  生155570
女  生54550
總  計(jì)20100120
(9分)
故K2的觀測(cè)值$k=\frac{{120{{({15×45-5×55})}^2}}}{20×100×50×70}=\frac{96}{35}≈2.743<3.841$.(11分)
故在犯錯(cuò)誤的概率不超過(guò)0.05的前提下不能認(rèn)為“是否為‘運(yùn)動(dòng)達(dá)人’與性別有關(guān)”.
(12分)

點(diǎn)評(píng) 本題考查分層抽樣,獨(dú)立檢驗(yàn)的思想方法,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖的程序框圖,若輸入N=2016,則輸出S等于( 。
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2013}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)$\frac{π}{2}$<α<$\frac{3π}{4}$,角α的正弦線、余弦線和正切線的數(shù)量分別為a,b,c,則( 。
A.a>c>bB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,數(shù)據(jù)如表
認(rèn)為作業(yè)量大認(rèn)為作業(yè)量不大總計(jì)
男生18927
女生81523
總計(jì)262450
則推斷“學(xué)生的性別與認(rèn)為作業(yè)量大有關(guān)”的把握大約為( 。
附:Χ2=$\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}•{n_{2+}}•{n_{+1}}•{n_{+2}}}}$.
獨(dú)立性檢驗(yàn)臨界值表
P(χ2≥k)0.050.0100.0050.001
K3.8416.6357.87910.828
A.99%B.95%C.90%D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐M-ABCD中,底面ABCD為矩形,MD⊥平面ABCD,且MD=DA=1,E為MA中點(diǎn).
(1)求證:DE⊥MB;
(2)若DC=2,求三棱錐M-EBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=x+$\frac{a}{x}$(a>0)的單調(diào)減區(qū)間為(-$\sqrt{a}$,0),(0,$\sqrt{a}$),若f(x)在[a-2,+∞)上是增函數(shù),則a的取值范圍為[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.圓ρ=2cos($θ+\frac{π}{4}$)的圓心為(  )
A.(1,$\frac{π}{4}$)B.(1,$\frac{3π}{4}$)C.(1,$\frac{5π}{4}$)D.(1,$\frac{7π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知等腰梯形ABCD為⊙O的內(nèi)接四邊形,AB∥CD,PA=AB=2CD=2,PA⊥平面ABCD,已知E為PA的中點(diǎn),連接DE.
(1)證明:DE∥平面PBC;
(2)求二面角D-BC-P的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,角A,B,C的所對(duì)邊分別為a,b,c,若a2-b2=$\frac{1}{2}$c2,則$\frac{2acosB}{c}$的值為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案